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Abstract: In the present paper we introduce some difference vector-valued se-
quence spaces defined by a sequence of modulus functions and a multiplier se-
quence u = (uk) of non-zero complex numbers. We also make an efforts to study
some topological properties and inclusion relation between these spaces. It is also
shown that if a sequence is strongly ∆m

n uq-Cesaro summable with respect to the
modulus function f then it is ∆m

n uq-statistically convergent.
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1. Introduction and preliminaries

The studies on vector-valued sequence spaces was exploited by Kamthan [11],
Ratha and Srivastava [18], Leonard [14], Gupta [9], Tripathy and Sen [24] and
many others. The scope for the studies on sequence spaces was extended on intro-
ducing the notion of associated multiplier sequences. Goes and Goes [8] defined
the differentiated sequence space dE and integrated sequence space

∫
E for a given

sequence space E, with the help of multiplier sequences (k−1) and (k) respectively.
Kamthan used the multiplier sequence (k!) see [11]. Studies on multiplier sequence
spaces were carried out by Colak [1], Colak et al. [4], Srivastava and Srivastava
[23], Tripathy and Mahanta [25] and many others.
Let w be the set of all sequences of real or complex numbers and let l∞, c and
c0 be the Banach spaces of Bounded, convergent and null sequences x = (xk) re-
spectively with the usual norm ‖x‖ = sup |xk|, where k ∈ N, is the set of positive
integers.
Throughout the paper, for all k ∈ N, Ek are seminormed spaces seminormed by
qk and X is a seminormed space seminormed by q. By w(Ek), c(Ek), l∞(Ek) and
lp(Ek) we denote the spaces of all convergent, bounded and p-absolutely summable
Ek-valued sequences. In case Ek = C (the field of complex numbers) for all k ∈ N,
one has the scalar valued sequence spaces. The zero elements of Ek are denoted
by θk. The zero sequence is denoted by θ̄ = (θk).
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A function f : [0,∞) → [0,∞) is said to be a modulus function if it satisfies the
following:

(1) f(x) = 0 if and only if x = 0;
(2) f(x+ y) ≤ f(x) + f(y) for all x ≥ 0, y ≥ 0;
(3) f is increasing;
(4) f is continuous from right at 0.

It follows that f must be continuous everywhere on [0,∞). The modulus function
may be bounded or unbounded. For example, if we take f(x) = x

x+1 , then f(x)

is bounded. If f(x) = xp, 0 < p < 1, then f(x) is unbounded. Subsequentially,
modulus function has been discussed in ([3], [16], [19], [21], ) and many others.
Let X be a linear metric space. A function p : X → R is called paranorm, if

(1) p(x) ≥ 0, for all x ∈ X,
(2) p(−x) = p(x), for all x ∈ X,
(3) p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X,
(4) if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a

sequence of vectors with p(xn − x) → 0 as n → ∞, then p(λnxn − λx) →
0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [26], Theorem 10.4.2,
P-183).
The notion of difference sequence spaces was introduced by Kizmaz [12], who
studied the difference sequence spaces l∞(∆), c(∆) and co(∆). The notion was
further generalized by Et and Colak [4] by introducing the spaces l∞(∆m), c(∆m)
and co(∆

m).
Let m, n be non-negative integers, then for Z = l∞, c, c0. We have sequence
spaces

Z(∆m
n ) = {x = (xk) ∈ w : (∆m

n xk) ∈ Z},
where ∆m

n x = (∆m
n xk) = (∆m−1

n xk − ∆m−1
n xk+1) and ∆0

nxk = xk for all k ∈ N,
which is equivalent to the following binomial representation

∆m
n xk =

m∑
v=0

(−1)v
(
m
v

)
xk+nv. (1.1)

Taking n = 1, we get the spaces which were studied by Et and Colak [4]. Taking
m = n = 1, we get the spaces which were introduced and studied by Kizmaz [12].
The following inequality will be used throughout the paper. Let p = (pk) be a
sequence of positive real numbers with 0 ≤ pk ≤ sup pk = G, K = max(1, 2G−1)
then

|ak + bk|pk ≤ K{|ak|pk + |bk|pk} (1.2)

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|G) for all a ∈ C.

Let (Ek, qk) be a sequence of seminormed spaces such that Ek+1 ⊂ Ek for each
k ∈ N, p = (pk) a sequence of strictly positive real numbers, Q = (qk) a sequence
of seminorms, F = (fk) a sequence of modulus functions, and u = (uk) any fixed
sequence of nonzero complex numbers. In the present paper we define the following
classes of sequences:

w0(∆m
n , F,Q, p, u) =

{
x = (xk) : xk ∈ Ek :

1

n

n∑
k=1

[fk(qk(uk∆
m
n xk))]

pk → 0, as n→∞
}
,
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w1(∆m
n , F,Q, p, u) =

{
x = (xk) : xk ∈ Ek :

1

n

n∑
k=1

[fk(qk(uk∆
m
n xk−l))]pk → 0, as n→∞,

l ∈ Ek
}

and

w∞(∆m
n , F,Q, p, u) =

{
x = (xk) : xk ∈ Ek : sup

n

1

n

n∑
k=1

[fk(qk(uk∆
m
n xk))]

pk <∞
}

(1.3)

Throughout the paper z will denote any one of the notation 0, 1 or∞. If fk = f and
qk = q for all k ∈ N, we will write wz(∆

m
n , f, q, p, u) instead of wz(∆

m
n , F,Q, p, u).

If f(x) = x and pk = 1 for all k ∈ N, we will write wz(∆
m
n , q, u) instead of

wz(∆
m
n , f, q, p, u).

If x ∈ w1(∆m
n , f, q, p, u) we say that x is strongly ∆m

n uq-Cesaro summable with
respect to the modulus function f and we will write xk → l(w1(∆m

n , f, q, p, u)),
where l will be called ∆m

n uq-limit of x with respect to the modulus function f .
The aim of this paper is to study some topological properties and some inclusion
relation between the above defined classes of sequences wz(∆

m
n , F,Q, p, u).

2. Main Results

Theorem 2.1. Let the sequence p = (pk) be bounded. Then the spaces
wz(∆

m
n , F,Q, p, u) are linear spaces.

Proof. We shall prove the result for z = 0. let x = (xk), y = (yk) ∈ w0(∆m
n , F,Q, p, u).

and α, β ∈ C. Then there exist integers Mα and Nβ such that |α| ≤ Mα and
|β| ≤ Nβ. By using inequality (1.2) and the properties of modulus function, we
have

1

n

n∑
k=1

[fk(qk(uk∆
m
n (αxk + βyk)))]

pk ≤ 1

n

n∑
k=1

[fk(qk(αuk∆
m
n xk + βuk∆

m
n yk))]

pk

≤ D
1

n

n∑
k=1

[Mαfk(qk(uk∆
m
n xk))]

pk

+ D
1

n

n∑
k=1

[Nβfk(qk(uk∆
m
n yk))]

pk

≤ DMH
α

1

n

n∑
k=1

[fk(qk(uk∆
m
n xk))]

pk

+ DNH
β

1

n

n∑
k=1

[fk(qk(uk∆
m
n yk))]

pk

→ 0 as n→∞.

This proves that w0(∆m
n , F,Q, p, u) is a linear space. Similarly we can prove that

w1(∆m
n , F,Q, p, u) and w∞(∆m

n , F,Q, p, u) are linear spaces.

Theorem 2.2. Let f be a modulus function and let p = (pk) be a bounded
sequence. Then

w0(∆m
n , F,Q, p, u) ⊂ w1(∆m

n , F,Q, p, u) ⊂ w∞(∆m
n , F,Q, p, u) (2.1)

and the inclusions are strict.
Proof. The inclusion w0(∆m

n , F,Q, p, u) ⊂ w1(∆m
n , F,Q, p, u) is obvious. Now, let
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x = (xk) ∈ w1(∆m
n , F,Q, p, u) then

1

n

n∑
k=1

[fk(qk(uk∆
m
n xk))]

pk → 0, as n→∞.

Now by using (1.2) and the properties of modulus function, we have

sup
n

1

n

n∑
k=1

[fk(qk(uk∆
m
n xk))]

pk = sup
n

1

n

n∑
k=1

[fk(qk(uk∆
m
n xk − l + l))]pk

≤ D sup
n

1

n

n∑
k=1

[fk(qk(uk∆
m
n xk − l))]pk

+ D sup
n

1

n

n∑
k=1

[fk(qk(l))]
pk

≤ D sup
n

1

n

n∑
k=1

[fk(qk(uk∆
m
n xk − l))]pk

+ Dmax{fk(qk(l))h, fk(qk(l))H}
< ∞.

Hence x = (xk) ∈ w∞(∆m
n , F,Q, p, u). This proves that w1(∆m

n , F,Q, p, u) ⊂
w∞(∆m

n , F,Q, p, u). This completes the proof of the theorem.

Theorem 2.3. Let p = (pk) be a bounded sequence of positive real numbers.Then
the space w0(∆m

n , F,Q, p, u) is a complete paranormed space with the paranorm
defined by

g∆(x) = sup
n

( 1

n

n∑
k=1

[fk(qk(uk∆
m
n xk))]

pk
) 1

M
, (2.2)

where M = max(1, sup pk).

Proof. Let (x(i)) be a cauchy sequence in w0(∆m
n , F,Q, p, u). Then for a given

ε > 0, there exists n0 such that g(xi − xj) < ε, for all i, j ≥ n0. Thus we have[ n∑
k=1

[fk(qk(uk∆
m
n (xik − x

j
k)))]

pk
] 1

M
< ε, for all i, j ≥ n0. (2.3)

⇒
(
fk(qk(uk∆

m
n (xik − x

j
k)))

)
< ε, for all i, j ≥ n0.

⇒ ∆m
n (xik − x

j
k) < ε, for all i, j ≥ n0, for all k ∈ N.

Hence (xik)
∞
i=1 is a cauchy sequence in Ek, for each k ∈ N. Since Ek are complete

for each k ∈ N, so (xik)
∞
i=1 converges in Ek, for each k ∈ N. On taking limit as

j →∞ in (2.3), we have[ n∑
k=1

[fk(qk(uk∆
m
n (xik − xk)))]pk

] 1
M
< ε, for all i ≥ n0.

⇒ ∆m
n (xik − x) ∈ w0(∆m

n , F,Q, p, u).

Since w0(∆m
n , F,Q, p, u) is a linear space, so we have x = x(i) − (x(i) − x) ∈

w0(∆m
n , F,Q, p, u). Thus w0(∆m

n , F,Q, p, u) is a complete paranormed space. This
completes the proof of the theorem.
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Theorem 2.4. Let F = (fk) and G = (gk) be any two sequences of modulus
functions. For any bounded sequences p = (pk) and t = (tk) of strictly positive
real numbers and for any two sequences of seminorms Q = (qk) and R = (rk), we
have
(i) wz(∆

m
n , f,Q, u) ⊂ wz(∆m

n , fog,Q, u);
(ii) wz(∆

m
n , F,Q, p, u) ∩ wz(∆m

n , F,R, p, u) ⊂ wz(∆m
n , F,Q+R, p, u);

(iii) wz(∆
m
n , F,Q, p, u) ∩ wz(∆m

n , G,Q, p, u) ⊂ wz(∆m
n , F +G,Q, p, u);

(iv) If qk is stronger than rk for each k ∈ N, then wz(∆
m
n , F,Q, p, u) ⊂ wz(∆m

n , F,R, p, u);
(v) If qk equivalent to rk for each k ∈ N, then wz(∆

m
n , F,Q, p, u) = wz(∆

m
n , F,R, p, u);

(vi) wz(∆
m
n , F,Q, p, u) ∩ wz(∆m

n , F,R, p, u) 6= φ.
Proof. (i) We shall prove (i) for the case z = 0. We choose δ, 0 < δ < 1, such that
f(t) < ε for 0 ≤ t ≤ δ and all k ∈ N. We write yk = g(qk(uk∆

m
n xk)) and consider

n∑
k=1

[f(yk)] =
∑

1

[f(yk)] +
∑

2

[f(yk)], (2.4)

where the first summation is over yk ≤ δ and the second summation is over yk > δ.
Since f is continuous, we have∑

1

[f(yk)] < nε. (2.5)

By the definition of f , we have the following relation for yk > δ,

f(yk) < 2f(1)
yk
δ
. (2.6)

Hence

1

n

∑
2

[f(yk)] ≤ 2δ−1f(1)
1

n

n∑
k=1

yk. (2.7)

It follows from equations (2.5) and (2.7) that wz(∆
m
n , f,Q, u) ⊂ wz(∆m

n , fog,Q, u).
Similarly, we can prove the result for other cases.
corollary 2.5. Let f be a modulus function. Then wz(∆

m
n , Q, u) ⊂ wz(∆m

n , f,Q, u).
Proof. It is easy to prove in view of theorem 2.4(i).

Theorem 2.6. Let 0 < pk ≤ rk and
(
rk
pk

)
be bounded. Then

wz(∆
m
n , F,Q, r, u) ⊂ wz(∆m

n , F,Q, p, u).

Proof. By taking yk = [fk(qk(uk∆
m
n xk))]

rk for all k and using the same technique
of Maddox ([15], thm.5) one can easily prove the theorem.

Theorem 2.7. Let f be a modulus function. If lim
s→∞

f(s)

s
= α > 0, then

w1(∆m
n , Q, p, u) = w1(∆m

n , f,Q, p, u).

Proof. It is easy to prove so we omit the details.
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3. ∆m
n uq-Statistical Convergence

The notion of statistical convergence were introduced by Fast [6] and Schoen-
berg [22], independently. Over the years and under different names, statistical
convergence has been discussed in the theory of Fourier analysis, ergodic theory
and number theory. later on, it was further investigated from the sequence point
of view and linked with summability theory by Fridy [7], Connor [5], Salat [20],
Mursaleen [17], Isik [10], Savas [21], Malkosky and Savas [16], Kolk [13], Maddox
[15], Tripathy and Sen [24] and many others. In recent years, generalizations of
statistical convergence have appeared in the study of strong integral summability
and the structure of ideals of bounded continuous functions on locally compact
spaces. Statistical convergence and its generalizations are also connected with
subsets of the Stone-Cech compactification of natural numbers. Moreover, statis-
tical convergence is closely related to the concept of convergence in probability.
The notion depends on the density of subsets of the set N of natural numbers.
A subset E of N is said to have the natural density δ(E) if the following limit
exists:

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k) (3.1)

where χE is the characteristic function of E. It is clear that any finite subset of N
have zero natural density and δ(Ec) = 1− δ(E).
In this section, we introduce ∆m

n uq-statistically convergent sequences and give
some relation between ∆m

n uq-statistically convergent sequences and w1(f, q, p, u)-
summable sequences.
Definition A sequence x = (xk) is said to be ∆m

n uq-statistically convergent to l
if for every ε > 0,

δ
(
k ∈ N : q(uk∆

m
n xk − l) ≥ ε

)
= 0. (3.2)

In this case, we write xk → l(Squ(∆m
n )). The set of all ∆m

n uq-statistically conver-
gent sequences is denoted by Squ(∆m

n ). In case l = 0, we write Sq0u(∆m
n ) instead of

Squ(∆m
n ).

Theorem 3.1. Let f be a modulus function. Then
(i) If xk → l(w1(∆m

n , q, u)), then xk → l(Squ(∆m
n ));

(ii) If x ∈ l∞(∆m
n uq) and xk → l(Squ(∆m

n )), then xk → l(w1(∆m
n , q, u));

(iii) Squ(∆m
n ) ∩ l∞(∆m

n uq) = w1(∆m
n , q, u) ∩ l∞(∆m

n uq),

where l∞(∆m
n uq) =

{
x ∈ w(X) : sup

k
q(uk∆

m
n xk) <∞

}
.

Proof. The proof is easy so we omit the details.

Theorem 3.2. let p = (pk) be a bounded sequence and 0 < h = inf pk ≤
pk ≤ sup pk ≤ sup pk = H <∞ and let f be a modulus function. Then

w1(∆m
n , f, q, p, u) ⊂ Squ(∆m

n ).

Proof. Let x ∈ w1(∆m
n , f, q, p, u) and let ε > 0 be given. Let

∑
1 and

∑
2 denote

the sums over k ≤ n with q(uk∆
m
n xk− l) ≥ ε and q(uk∆

m
n xk− l) < ε, respectively.
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Then

1

n

n∑
k=1

[f(q(uk∆
m
n xk − l))]pk =

1

n

∑
1

[f(q(uk∆
m
n xk − l))]pk

≥ 1

n

∑
1

[f(ε)]pk

≥ 1

n

∑
1

min([f(ε)]h, [f(ε)]H) (3.3)

≥ 1

n
|{k ≤ n : q(uk∆

m
n xk − l) ≥ ε}|min([f(ε)]h, [f(ε)]H).

Hence x ∈ Squ(∆m
n ).

Theorem 3.3. Let f be a bounded modulus function; then

Squ(∆m
n ) ⊂ w1(∆m

n , f, q, p, u).

Proof. Suppose that f is bounded. Let ε > 0 and let
∑

1 and
∑

2 be the sums
introduced in the theorem 3.2. Since f is bounded, there exists an integer K such
that f(x) < k, for all x ≥ 0. Then

1

n

n∑
k=1

[f(q(uk∆
m
n xk − l))]pk ≤ 1

n

(∑
1

[f(q(uk∆
m
n xk − l))]pk +

∑
2

[f(q(uk∆
m
n xk − l))]pk

)
≤ 1

n

∑
1

max(Kh,KH) +
1

n

∑
2

[f(ε)]pk

≤ max(Kh,KH)
1

n
|{k ≤ n : q(uk∆

m
n xk − l) ≥ ε}|

+ max(f(ε)h, f(ε)H). (3.4)

Hence x ∈ w1(∆m
n , f, q, p, u).

Theorem 3.4. Squ(∆m
n ) = w1(∆m

n , f, q, p, u) if and only if f is bounded.
Proof. Let f be bounded. By Theorems 3.2 and 3.3, we have Squ(∆m

n ) =
w1(∆m

n , f, q, p, u).
Conversely, suppose that f is unbounded. Then there exists a sequence (tk) of
positive numbers with f(tk) = k2, for k = 1, 2, · · · . If we choose

ui∆
m
n xi =

{
tk, i = k2, i = 1, 2, · · · ,
0, otherwise

. (3.5)

Then we have

1

n
|k ≤ n : |uk∆m

n xk| ≥ ε| ≤
√
n

n
(3.6)

for all n and so x ∈ Squ(∆m
n ) but x 6∈ w1(∆m

n , f, q, p, u) for X = C, q(x) = |x| and
pk = 1 for all k ∈ N. This contradicts to Squ(∆m

n ) = w1(∆m
n , f, q, p, u).

References

[1] R. Colak, On invariant sequence spaces, Erc. Univ. J. Sci., 5(1989), 881-887.

[2] R. Colak, On certain sequence spaces and their Kothe-Toeplitz duals, Rend. Mat. Appl., Ser,

13(1993), 27-39.

[3] M. Et, A. Gokhan and H. Altinok, On statistical convergence of vector-valued sequences associated

with multiplier sequences, Ukrainian Mathematical Journal, 58(2006), 139-146.

On some new generalized di_erence vector-valued sequence…

7



8

[4] M. Et and R. Colak, On generalized difference sequence spaces, Soochow J. Math., 21(1995), 377-386.

[5] J. S. Connor, A topological and functional analytic approach to statistical convergence, Appl.
Numer. Harmonic Anal., (1999), 403-413.

[6] H. Fast, Sur La Convergence statistique, Colloq. Math., 2(1951), 241-244.

[7] J. A. Fridy, On Statistical convergence, Analysis, 5(1985), 301-313.

[8] G. Goes and S. Goes, Sequence of bounded variation and sequences of Fourier coefficients, Math.

Zeit, 118(1970), 93-102.

[9] M. Gupta, The generalized spaces l1(X) and m0(X), J. math. Anal. Appl., 76(1980), 357-367.

[10] M. Isik, On Statistical convergence of generalized difference sequence spaces, Soochow J. Math.,

30(2004), 197-205.

[11] P. K. Kamthan, Bases in a certain class of Frechet spaces, Tamkang J. Math., 7(1976), 41-49.

[12] H. Kizmaz, On certain sequences spaces , Canad. Math. Bull., 24(1981), 169-176.

[13] E. Kolk, The statistical convergence in Banach spaces, Acta. Comment. Univ. Tartu.,928(1991),

41-52.

[14] I. E. Leonard, Banach sequence spaces, J. Math. Anal. Appl., 54(1976), 245-265.

[15] I. J. Maddox, Statistical convergence in a locally convex space , Math. Proc. Camb. Phil.Soc.,

104(1988), 141-145.

[16] E. Malkowsky and E. savas, Some λ-sequence spaces defined by a modulus, Arc. Math., 36(2000),

219-228.

[17] M. Mursaleen, λ-statistical convergence, Math. Slovaca., 50(2000), 111-115.

[18] A. Ratha and P.D. Srivastava, On some vector valued sequence spaces L
(p)
∞ (Ek,Λ), Ganita.,

47(1996), 1-12.

[19] K. Raj and S. K. Sharma, Some difference sequence spaces defined by sequence of modulus function,

Int. Journal of Mathematical Archive, Vol.2 (2011), 236-240.

[20] T. Salat, On Statistical convergent sequences of real numbers, Math. Slovaca., 30(1980), 139-150.

[21] E. Savas, On some generalized sequence spaces defined by a modulus, Indian Journal of Pure and

Applied Mathematics, 30(1999), 459-464.

[22] I. J. Schoenberg, The integrability of certain functions and relted summability methods, Amer.
Math. Monthly, 66(1959), 361-375.

[23] J. K. Srivastava and B. K. Srivastava, Generalized sequence space c0(X,λ, p), Indian Journal of

Pure and Applied Mathematics, 27(1996), 73-84.

[24] B. C. Tripathy and M. Sen, On generalized Statistically convergent sequences, Indian Journal of
Pure and Applied Mathematics, 32(2001), 1689-1694.

[25] B. C. Tripathy and S. Mahanta, On a class of vector valued sequences associated with multiplier

sequences, Acta Math. Appl. Sinica, 20(2004), 487-494.

[26] A. Wilansky, Summability through Functional Analysis, North- Holland Math. stnd. (1984).

Kuldip Raj and Amit Gupta

8


