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1. Preliminaries 

In 1965 Njastad [9] introduced the concept of α open sets in topology. A subset A of a topological space (X, τ) is 

said to be α open if A ⊂ int(Cl(int(A))). Every open set is α open but the converse may not be true. In 1963 Kelly 

[5] introduced the concept of bitopological spaces as an extension of topological spaces. A bitopological space (X, 

τ1, τ2) is a nonempty set X equipped with two topologies τ1 and τ2 [5]. The study of quasi open sets in bitopological 

spaces was initiated by Datta [1] in 1971. In a bitopological space (X, τ1, τ2) a set A of X is said to be quasi open [1] 

if it is a union of a τ1-open set and a τ2-open set. Complement of a quasi open set is termed quasi closed. Every τ1-

open (resp. τ2-open) set is quasi open but the converse may not be true. Any union of quasi open sets of X is quasi 

open in X. The intersection of all quasi closed sets which contains A is called quasi closure of A [7]. It is denoted by 

qcl(A). The union of quasi open subsets of A is called quasi interior of A. It is denoted by qInt(A) [7]. In 1985, 

Thakur and Paik [10] introduced the concept of quasi α open sets in bitopological spaces. A set A in a bitopological 

space (X, τ1, τ2) is called quasi α open [10] if it is a union of a τ1α- open set and a τ2α- open set.  Complement of a 

quasi α open set is called quasi α closed. Every τ1α- open (τ2α- open, quasi open) set is quasi α open but the converse 

may not be true. Any union of quasi α open sets of X is a quasi α open set in X. The intersection of all quasi α closed 

sets which contains A is called quasi α closure of A. It is denoted by qαcl(A). The union of quasi α open subsets of 

A is called quasi α- interior of A. It is denoted by qαInt(A)[10]. Further, in 1980 Maheshwari and Thakur [8] 

introduced α-irresolute mappings. A mapping  f: (X,τ)  (Y,σ) is called a  α- irresolute if  f -1(V) is a α- open set in 

X for every  α- open set V of Y [8]. 

 

The concept of ideal topological spaces was initiated Kuratowski [6] and Vaidyanathaswamy [11].  An Ideal I on a 

topological space (X, τ) is a non empty collection of subsets of X which satisfies: i) A  I and B  A  B  I 

and ii) A  I and B  I  AB  I  If  𝒫 (X)  is the set of all subsets of X, in a topological space (X, τ) a set 

operator (.)*:𝒫 (X)  𝒫 (X) called the local function [2] of A with respect to τ and I and is defined as follows:      
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                         A∗(τ, I) = {xXU  A  I,  U τ(x)}, where τ(x) = U τ xU}.  

Given an ideal bitopological space (X,τ1,τ2,I)  the quasi local function [3] of A with respect to τ1, τ2 and I denoted 

by A𝑞
∗  (τ1,τ2,I) ( in short A𝑞

∗ )  is defined as follows:  

     A𝑞
∗ (τ1,τ2,I) = {xXU  A  I , quasi open set U containing x}.  

A subset A of an ideal bitopological space (X, τ1, τ2) is said to be qI- open [3] if A  qInt A𝑞
∗ .  A mapping  f: 

(X,τ1,τ2,I)  (Y,σ1,σ2) is called  qI-continuous [3]   if  f -1(V) is qI-open in X for every quasi open set V of Y. 

Recently the authors of this paper [4] defined  qαI- open sets and qαI- continuous mappings in ideal bitopological 

spaces. 

 

Definition1.1.[4] Given an ideal bitopological space (X,τ1,τ2,I)  the quasi α- local mapping of A with respect to τ1, 

τ2 and I denoted by Aqα
∗ (τ1,τ2,I) (more generally as Aqα

∗ ) is defined as        A𝑞α
∗ (τ1,τ2,I) = {xXU  A  I , 

quasi α open set U containing x} 

 

Definition1.2. [4] A subset A of an ideal bitopological space (X,τ1,τ2,I) is qαI- open if    A  qαInt(Aqα
∗ ) and qαI- 

closed if its complement is qαI- open.  

 

Remark1.1. [4] Every qI- open set is qαI- open but the converse is not true 

 

Remark1.2. [4] The concepts of qαI- open sets and quasi α- open sets are independent. 

 

Definition1.3.[4] A mapping  f: (X,τ1,τ2,I)  (Y,σ1,σ2) is called a  qαI- continuous if  f -1(V) is a qαI- open set in 

X for every quasi open set V of Y 

 

Remark1.3.[4] Every qI- continuous mapping is qαI- continuous but the converse is not true 

 

Definition1.4.[4]  In an ideal bitopological space (X,τ1,τ2,I) the quasi *- α closure of A of X denoted by qαcl*(A) is 

defined by qαcl*(A) = A  Aqα
∗       

 

Definition1.5.[4]  A subset A of an ideal bitopological space (X,τ1,τ2,I) is said to be a qαI- neighbourhood of a 

point x ∈ X if  a qαI- open set O in X, such that x  ∈ O  A  

 

Definition1.6.[4]  Let A be a subset of an ideal bitopological space (X,τ1,τ2,I ) and x ∈ X. Then  x is called a qαI-

interior point of  A if   V a qαI- open set in X such that x  V  A. 

The set of all qαI- interior points of A is called the qαI- interior of A and is denoted by qαIInt(A).  

 

Definition1.7.[4]  Let A be a subset of an ideal bitopological space (X,τ1,τ2,I ) and x ∈ X. Then x is called a qαI-

cluster point of A, if V  A  ∅. for every qαI- open set V in X. The set of all qαI-cluster points of A denoted by 

qαIcl(A) is called the  qαI-closure of  A . 

 

2.   qαI- Irresolute Mappings 

 

Definition 2.1. A mapping  f: (X,τ1,τ2,I)  (Y,σ1,σ2) is called  qαI- irresolute if  f -1(V) is a qαI- open set in X for 

every quasi α open set V of Y. 

 

Remark 2.1.  Every qαI- irresolute mapping is qαI- continuous but the converse may not true. For, 
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Example 2.1.  Let X = {a, b, c} and I = {, {a}} be an ideal on X.  Let τ1 = {X, , {c}}, τ2 = {X, , {a, b}}, σ1 = 

{X, , {b}}and  σ2 = { , X} be topologies on X. Then the identity mapping                      f: (X,τ1, τ2 ,I)  (X,σ1,σ2) 

is qαI- continuous but not  qαI- irresolute.  

 

Theorem 2.1. Let f: (X,τ1, τ2, I)  (Y,σ1,σ2) be a mapping, then the following statements are equivalent: 

(a) f is qαI- irresolute.   

(b) f -1(V) is qαI- closed set in X for every quasi α- closed set V of Y  

(c) for each x  X and  every quasi α open set V of Y containing f(x),  a qαI- open set W of  X containing x 

such that f(W)   V. 

(d) for each x  X and  every quasi α open set V of Y containing f(x), f-1(V)qα
∗    is a qαI- neighbourhood  of  X.  

 

Proof:  (a) ⟺ (b). Obvious. 

(a)   (c). Let x  X and V be a quasi α open set of Y containing f(x). Since f is qαI- irresolute, f-1(V) is a qαI- 

open set. Put W = f -1(V), then x  W. Hence f(W)  V. 

(c)  (a). Let A be a quasi α open set in Y. If f-1(A) = ∅, then f-1(A) is clearly a  qαI- open set. Assume that f-1(A)  

∅ and x  f-1(A), then f(x)  A   a qαI- open set W containing x such that f (W)  A. Thus, W  f-1(A). Since 

W is qαI- open, x  W  qαInt(𝑊qα
∗ )   

qαInt(f-1(A)qα
∗ ) and so f-1(A)  qαInt(f -1(A)qα

∗ ). Hence f-1(A) is a qαI- open set and so f is  qαI- irresolute.  

(c) (d).  Let x  X and V be a quasi α open set of Y containing f(x) then  a  qαI- open set W containing x such 

that   f(W)  V  Therefore  W   f-1(V). Since W is a qαI- open set, x  W  qαInt(W𝑞α
∗ ))  qαInt(f-1(V)qα

∗ )  (f-

1(V)qα
∗ ). Hence f-1(V)qα

∗ ) is a qαI- neighbourhood of x.   

(d) (c). Obvious.  

 

Definition2.2. A mapping f: (X,τ1, τ2)  (Y,σ1,σ2,I) is said to be : 

(a) qαI- α open if  f(U) is a qαI- open set of Y for every quasi α open set U of X. 

(b) qαI- α closed if f(U) is a qαI- closed set of Y for every quasi α closed set U of X. 

 

Theorem 2.2.   Let f: (X,τ1,τ2)  (Y,σ1,σ2,I) be a mapping. Then the following statements are equivalent: 

(a) f  is qαI- α open   

(b) f(qαInt(U))  qαIInt(f(U) for each subset U of X. 

(c) qαInt(f-1(V))  f-1(qαIInt(V)) for each subset V of Y. 

 

Proof:  (a)  (b). Let U be any subset of X. Then qαInt(U) is a quasi α open set of X.  Then  f(qαInt(U)) is a qαI-

open set of Y. Since f(qαInt(U))  f(U), f(qαInt(U)) =  qαIInt(f(qαInt(U))  qαIInt(f(U). 

(b)  (c).  Let V be any subset of Y. Obviously f-1(V) is a subset of X. Therefore by (b), f(qαInt(f-1(V)))  

qαIInt(f(f-1(V)))  qαIInt(V)).  Hence, qαInt(f-1(V))     f-1(f(qαInt(f -1(V))))   f-1(qαIInt(V)) 

(c)  (a). Let V be any quasi α open set of X. Then qαInt(V) = V and f(V) is a                                  subset of Y. So 

V = qαInt(V)  qαInt(f-1(f(V)))  f-1(qαIInt(f(V))). Then                               f(V)  f(f-1(qαIInt(f(V)))  

qαIInt(f(V) and  qαIInt(f(V)  f(V). Hence, f(V) is a                          qαI-open set of Y and  f is qαI-open.    

 

Theorem 2.3.   Let f: (X,τ1,τ2)  (Y,σ1,σ2,I) be a qαI- α open mapping. If  V is a  subset of  Y and U is a quasi α 

closed subset of X containing f-1(V), then there exists a  qαI- closed set F of Y containing V such that f-1(F)  U. 

 

Proof:  Let V be any subset of Y and U a quasi α closed subset of  X containing   f-1(V),  and let F = Y\(f(X\V)). 

Then f(X\V)  f(f-1(X\V))  (X\V) and X\U is a quasi α open set of  X. Since f is qαI- α open, f(X\U) is a qαI- 

open set of Y. Hence F is a quasi α closed subset of Y and         f-1(F) = f -1(Y\(f (X\U))  U.   

 

Theorem 2.4.  A mapping  f: (X,τ1,τ2)  (Y,σ1,σ2,I) is  qαI- α closed if and only if qαIcl(f(V)  f(qαcl(V) for each 

subset V of X.  
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Proof:  

Necessity   Let f be a qαI- α closed mapping and V be any subset of X. Then f(V)  f(qαcl(V) and f(qαcl(V) is a 

qαI- closed set of Y. Thus,  qαIcl(f(V))    qαIcl(f(qαcl(V))  =  f(qαcl(V).   

Sufficiency Let V be a quasi α closed set of X. Then by hypothesis  f(V)  qαIcl(f(V))  f(qαcl(V) = f(V) . And so, 

f(V) is a qαI- closed subset of Y. Hence, f is qαI- α closed.  

 

Theorem 2.5. A mapping f: (X,τ1,τ2)  (Y,σ1,σ2,I) is  qαI- α closed if and only if f-1(qαIcl(V))  qαcl(f-1(V)) for 

each subset V of Y. 

 

Proof:  Obvious. 

 

Theorem 2.6.  Let f: (X,τ1,τ2)  (Y,σ1,σ2,I) be a qαI- α closed mapping.  If  V is a subset of  Y  and U is a quasi α 

open subset of  X containing f-1(V), then there exists a qαI- open set F of Y  containing V such that f-1(F)  U.  

 

Proof:  Obvious. 
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