American Journal of Mathematics and Sciences Vol. 5, No.1, (January-December, 2016) Copyright © Mind Reader Publications ISSN No: 2250-3102 www.journalshub.com

On qal- Irresolute Mappings

Mandira Kar

Department of Mathematics St. Aloysius College, Jabalpur (M.P.) 482001 India. E-mail : <u>karmandira@gmail.com</u>

S. S. Thakur Department of Applied Mathematics Government Engineering College, Jabalpur (M.P.) 482011 India. E-mail : <u>samajh_singh@rediffmail.com</u>

Abstract

In the present paper the concept of qa LIrresolute mappings have been introduced and studied.

Keywords: Ideal bitopological spaces, $q\alpha I$ - Irresolute mappings, $q\alpha I$ - open sets and $q\alpha I$ - closed sets

AMS Subject classification: 54A05, 54C08

1. Preliminaries

In 1965 Njastad [9] introduced the concept of α open sets in topology. A subset A of a topological space (X, τ) is said to be α open if A \subset int(Cl(int(A))). Every open set is α open but the converse may not be true. In 1963 Kelly [5] introduced the concept of bitopological spaces as an extension of topological spaces. A bitopological space (X, τ_1, τ_2 is a nonempty set X equipped with two topologies τ_1 and τ_2 [5]. The study of quasi open sets in bitopological spaces was initiated by Datta [1] in 1971. In a bitopological space (X, τ_1 , τ_2) a set A of X is said to be quasi open [1] if it is a union of a τ_1 -open set and a τ_2 -open set. Complement of a quasi open set is termed quasi closed. Every τ_1 open (resp. τ_2 -open) set is quasi open but the converse may not be true. Any union of quasi open sets of X is quasi open in X. The intersection of all quasi closed sets which contains A is called quasi closure of A [7]. It is denoted by qcl(A). The union of quasi open subsets of A is called quasi interior of A. It is denoted by qInt(A) [7]. In 1985, Thakur and Paik [10] introduced the concept of quasi a open sets in bitopological spaces. A set A in a bitopological space (X, τ_1, τ_2) is called quasi α open [10] if it is a union of a $\tau_{1\alpha}$ open set and a $\tau_{2\alpha}$ open set. Complement of a quasi α open set is called quasi α closed. Every $\tau_{1\alpha}$ - open ($\tau_{2\alpha}$ - open, quasi open) set is quasi α open but the converse may not be true. Any union of quasi α open sets of X is a quasi α open set in X. The intersection of all quasi α closed sets which contains A is called quasi α closure of A. It is denoted by $q\alpha cl(A)$. The union of quasi α open subsets of A is called quasi α - interior of A. It is denoted by $q\alpha Int(A)[10]$. Further, in 1980 Maheshwari and Thakur [8] introduced α -irresolute mappings. A mapping f: $(X,\tau) \rightarrow (Y,\sigma)$ is called a α - irresolute if f⁻¹(V) is a α - open set in X for every α - open set V of Y [8].

The concept of ideal topological spaces was initiated Kuratowski [6] and Vaidyanathaswamy [11]. An Ideal I on a topological space (X, τ) is a non empty collection of subsets of X which satisfies: i) $A \in I$ and $B \subset A \Rightarrow B \in I$ and ii) $A \in I$ and $B \in I \Rightarrow A \cup B \in I$ If $\mathcal{P}(X)$ is the set of all subsets of X, in a topological space (X, τ) a set operator $(.)^*:\mathcal{P}(X) \to \mathcal{P}(X)$ called the local function [2] of A with respect to τ and I and is defined as follows:

Mandira Kar& S. S. Thakur

 $A^*(\boldsymbol{\tau}, \boldsymbol{I}) = \{ \mathbf{x} \in \mathbf{X} \mid U \cap A \notin \boldsymbol{I}, \forall U \in \boldsymbol{\tau}(\mathbf{x}) \}, \text{ where } \boldsymbol{\tau}(\mathbf{x}) = U \in \boldsymbol{\tau} \mid \mathbf{x} \in \mathbf{U} \}.$

Given an ideal bitopological space (X, τ_1, τ_2, I) the quasi local function [3] of A with respect to τ_1, τ_2 and I denoted by A_a^* (τ_1, τ_2, I) (in short A_a^*) is defined as follows:

 $A_q^*(\tau_1, \tau_2, I) = \{ x \in X | U \cap A \notin I, \forall \text{ quasi open set } U \text{ containing } x \}.$

A subset A of an ideal bitopological space (X, τ_1, τ_2) is said to be qI- open [3] if $A \subset qInt A_q^*$. A mapping f: $(X,\tau_1,\tau_2,I) \rightarrow (Y,\sigma_1,\sigma_2)$ is called qI-continuous [3] if $f^{-1}(V)$ is qI-open in X for every quasi open set V of Y. Recently the authors of this paper [4] defined $q\alpha I$ - open sets and $q\alpha I$ - continuous mappings in ideal bitopological spaces.

Definition 1.1.[4] Given an ideal bitopological space (X,τ_1,τ_2,I) the quasi α - local mapping of A with respect to τ_1 , τ_2 and I denoted by $A^*_{q\alpha}(\tau_1,\tau_2,I)$ (more generally as $A^*_{q\alpha}$) is defined as $A^*_{q\alpha}(\tau_1,\tau_2,I) = \{x \in X | U \cap A \notin I, \forall u \in I, \forall u \in I \}$ quasi α open set U containing x

Definition 1.2. [4] A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is $q\alpha I$ - open if $A \subset q\alpha Int(A_{q\alpha}^*)$ and $q\alpha I$ closed if its complement is $q\alpha I$ - open.

Remark1.1. [4] Every q I- open set is q αI - open but the converse is not true

Remark1.2. [4] The concepts of $q\alpha I$ - open sets and quasi α - open sets are independent.

Definition 1.3.[4] A mapping f: $(X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2)$ is called a $q\alpha I$ - continuous if f⁻¹(V) is a $q\alpha I$ - open set in X for every quasi open set V of Y

Remark1.3.[4] Every q*I*- continuous mapping is $q\alpha I$ - continuous but the converse is not true

Definition1.4.[4] In an ideal bitopological space (X, τ_1, τ_2, I) the quasi *- α closure of A of X denoted by $q\alpha cl^*(A)$ is defined by $q\alpha cl^*(A) = A \cup A^*_{\alpha\alpha}$

Definition1.5.[4] A subset A of an ideal bitopological space (X, τ_1, τ_2, I) is said to be a $q\alpha I$ - neighbourhood of a point $x \in X$ if \exists a $q\alpha I$ - open set O in X, such that $x \in O \subset A$

Definition1.6.[4] Let A be a subset of an ideal bitopological space (X,τ_1,τ_2,I) and $x \in X$. Then x is called a $q\alpha I$ -interior point of A if $\exists V \ a \ q\alpha I$ - open set in X such that $x \in V \subset A$. The set of all $q\alpha I$ - interior points of A is called the $q\alpha I$ - interior of A and is denoted by $q\alpha I$ Int(A).

Definition1.7.[4] Let A be a subset of an ideal bitopological space (X, τ_1, τ_2, I) and $x \in X$. Then x is called a $q\alpha I$ -cluster point of A, if $V \cap A \neq \emptyset$. for every $q\alpha I$ - open set V in X. The set of all $q\alpha I$ -cluster points of A denoted by $q\alpha Icl(A)$ is called the $q\alpha I$ -closure of A.

2. qal- Irresolute Mappings

Definition 2.1. A mapping f: $(X,\tau_1,\tau_2,I) \rightarrow (Y,\sigma_1,\sigma_2)$ is called $q\alpha I$ - irresolute if $f^{-1}(V)$ is a $q\alpha I$ - open set in X for every quasi α open set V of Y.

Remark 2.1. Every $q\alpha I$ - irresolute mapping is $q\alpha I$ - continuous but the converse may not true. For,

Example 2.1. Let $X = \{a, b, c\}$ and $I = \{\phi, \{a\}\}$ be an ideal on X. Let $\tau_1 = \{X, \phi, \{c\}\}, \tau_2 = \{X, \phi, \{a, b\}\}, \sigma_1 = \{X, \phi, \{b\}\}$ and $\sigma_2 = \{\phi, X\}$ be topologies on X. Then the identity mapping f: $(X, \tau_1, \tau_2, I) \rightarrow (X, \sigma_1, \sigma_2)$ is $q\alpha I$ - continuous but not $q\alpha I$ - irresolute.

Theorem 2.1. Let f: $(X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2)$ be a mapping, then the following statements are equivalent:

- (a) f is $q\alpha I$ irresolute.
- (b) f⁻¹(V) is $q\alpha I$ closed set in X for every quasi α closed set V of Y
- (c) for each $x \in X$ and every quasi α open set V of Y containing f(x), $\exists a \ q\alpha I$ open set W of X containing x such that $f(W) \subset V$.
- (d) for each $x \in X$ and every quasi α open set V of Y containing f(x), $f^{-1}(V)^*_{\alpha\alpha}$ is a $q\alpha I$ neighbourhood of X.

Proof: (a) \Leftrightarrow (b). Obvious.

(a) \Rightarrow (c). Let $x \in X$ and V be a quasi α open set of Y containing f(x). Since f is $q\alpha I$ - irresolute, $f^{-1}(V)$ is a $q\alpha I$ -open set. Put $W = f^{-1}(V)$, then $x \in W$. Hence $f(W) \subset V$.

(c) \Rightarrow (a). Let A be a quasi α open set in Y. If $f^{1}(A) = \emptyset$, then $f^{1}(A)$ is clearly a $q\alpha I$ - open set. Assume that $f^{1}(A) \neq \emptyset$ and $x \in f^{1}(A)$, then $f(x) \in A \Rightarrow \exists a q\alpha I$ - open set W containing x such that $f(W) \subset A$. Thus, $W \subset f^{1}(A)$. Since W is $q\alpha I$ - open, $x \in W \subset q\alpha Int(W^{*}_{q\alpha}) \subset$

 $q\alpha Int(f^{-1}(A)^*_{q\alpha})$ and so $f^{-1}(A) \subset q\alpha Int(f^{-1}(A)^*_{q\alpha})$. Hence $f^{-1}(A)$ is a $q\alpha I$ - open set and so f is $q\alpha I$ - irresolute.

(c) \Rightarrow (d). Let $x \in X$ and V be a quasi α open set of Y containing f(x) then $\exists a \ q\alpha I$ - open set W containing x such that $f(W) \subset V$ Therefore $W \subset f^{-1}(V)$. Since W is a $q\alpha I$ - open set, $x \in W \subset q\alpha Int(W_{q\alpha}^*)) \subset q\alpha Int(f^{-1}(V)_{q\alpha}^*) \subset (f^{-1}(V)_{q\alpha}^*)$. Hence $f^{-1}(V)_{q\alpha}^*$ is a $q\alpha I$ - neighbourhood of x.

(**d**) \Rightarrow (**c**). Obvious.

Definition2.2. A mapping f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2, I)$ is said to be :

- (a) $q\alpha I \alpha$ open if f(U) is a $q\alpha I$ open set of Y for every quasi α open set U of X.
- (b) $q\alpha I$ α closed if f(U) is a $q\alpha I$ closed set of Y for every quasi α closed set U of X.

Theorem 2.2. Let f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2,I)$ be a mapping. Then the following statements are equivalent:

- (a) f is $q\alpha I \alpha$ open
- (b) $f(q\alpha Int(U)) \subset q\alpha Int(f(U) \text{ for each subset } U \text{ of } X.$
- (c) $q\alpha Int(f^{-1}(V)) \subset f^{-1}(q\alpha Int(V))$ for each subset V of Y.

Proof: (a) \Rightarrow (b). Let U be any subset of X. Then qaInt(U) is a quasi α open set of X. Then f(qaInt(U)) is a qaIopen set of Y. Since f(qaInt(U)) \subset f(U), f(qaInt(U)) = qaInt(f(qaInt(U)) \subset qaInt(f(U). (b) \Rightarrow (c). Let V be any subset of Y. Obviously f¹(V) is a subset of X. Therefore by (b), f(qaInt(f¹(V))) \subset

 $\begin{array}{ll} q\alpha I \text{Int}(f(f^{-1}(V))) \subset q\alpha I \text{Int}(V)). \text{ Hence, } q\alpha \text{Int}(f^{-1}(V)) \ \subset f^{-1}(q\alpha I \text{Int}(f^{-1}(V))) \ \subset f^{-1}(q\alpha I \text{Int}(V)) \\ \textbf{(c)} \Rightarrow \textbf{(a). Let V be any quasi } \alpha \text{ open set of } X. \text{ Then } q\alpha \text{Int}(V) = V \text{ and } f(V) \text{ is a } \\ V = q\alpha \text{Int}(V) \subset q\alpha \text{Int}(f^{-1}(f(V))) \ \subset f^{-1}(q\alpha I \text{Int}(f(V))). \text{ Then } \\ q\alpha I \text{Int}(f(V) \text{ and } q\alpha I \text{Int}(f(V) \subset f(V). \text{ Hence, } f(V) \text{ is a } \\ q\alpha I \text{ open set of } Y \text{ and } f \text{ is } q\alpha I \text{ open.} \end{array}$

Theorem 2.3. Let f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2,I)$ be a q αI - α open mapping. If V is a subset of Y and U is a quasi α closed subset of X containing f⁻¹(V), then there exists a q αI - closed set F of Y containing V such that f⁻¹(F) \subset U.

Proof: Let V be any subset of Y and U a quasi α closed subset of X containing $f^{-1}(V)$, and let $F = Y \setminus (f(X \setminus V))$. Then $f(X \setminus V) \subset f(f^{-1}(X \setminus V)) \subset (X \setminus V)$ and $X \setminus U$ is a quasi α open set of X. Since f is $q\alpha I$ - α open, $f(X \setminus U)$ is a $q\alpha I$ -open set of Y. Hence F is a quasi α closed subset of Y and $f^{-1}(F) = f^{-1}(Y \setminus (f(X \setminus U)) \subset U$.

Theorem 2.4. A mapping $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2, I)$ is $q\alpha I$ - α closed if and only if $q\alpha I cl(f(V) \subset f(q\alpha cl(V) \text{ for each subset V of } X.$

Proof:

Necessity Let f be a q αI - α closed mapping and V be any subset of X. Then $f(V) \subset f(q\alpha cl(V) \text{ and } f(q\alpha cl(V) \text{ is a } q\alpha I \text{ - closed set of Y. Thus, } q\alpha I cl(f(V)) \subset q\alpha I cl(f(q\alpha cl(V)) = f(q\alpha cl(V).$

Sufficiency Let V be a quasi α closed set of X. Then by hypothesis $f(V) \subset q\alpha Icl(f(V)) \subset f(q\alpha cl(V) = f(V)$. And so, f(V) is a $q\alpha I$ - closed subset of Y. Hence, f is $q\alpha I$ - α closed.

Theorem 2.5. A mapping f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2,I)$ is $q\alpha I$ - α closed if and only if $f^{-1}(q\alpha Icl(V)) \subset q\alpha cl(f^{-1}(V))$ for each subset V of Y.

Proof: Obvious.

Theorem 2.6. Let f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2,I)$ be a q αI - α closed mapping. If V is a subset of Y and U is a quasi α open subset of X containing f⁻¹(V), then there exists a q αI - open set F of Y containing V such that f⁻¹(F) \subset U.

Proof: Obvious.

References

- 1. Datta M.C., Contributions to the theory of bitopological spaces, Ph.D. Thesis, B.I.T.S. Pilani India (1971)
- 2. Hayashi E., Topologies defined by local properties, Math. Ann., 156 (1964), 205-215
- **3.** Jafari S. and Rajesh N., On q*I* open sets in ideal bitopological spaces, University of Bacau, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, Vol. 20 (2010), No.2, 29-38
- 4. Kar M. and Thakur S.S., Quasi α- Local Functions in Ideal Bitopological Spaces
- 5. Kelly J.C., Bitopological Spaces, Proc. London Math. Soc.13(1963)71-89
- 6. Kuratowski K., Topology, Vol. I, Academic press, New York, (1966)
- 7. Maheshwari S.N., Chae G.I., and Jain P.C., On quasi open sets, U.I.T. Report, 11 (1980) 291-292.
- 8. Maheshwari S.N. and Thakur S.S. On α- irresolute mappings, Tamkang J. Math. 11(2) (1980) 209-214
- 9. Njastad O., On some classes of nearly open sets, Pacific, J. Math., 15(1965), 961-970
- 10. Thakur S.S., and Paik P., Quasi α-sets, J. Indian Acad. Math., 7(1985), 91–95.
- 11. Vaidyanathaswamy R., The localization theory in set topology, Proc. Indian Acad. Sci., 20(1945),51-61