FUZZY PAIRWISE GENERALIZED ρ -CLOSED SETS WHERE $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$ IN FUZZY BITOPOLOGICAL SPACES

Bhuvaneswari Balasubramanian¹ N.Chandramathi² and S.Bharathi³

 ¹ Department of Mathematics, Mother Teresa Women's University Kodaikanal, Tamilnadu, India. Email:<u>drkbmaths@gmail.com</u>
² Department of Mathematics, Hindusthan college of Engineering and Technology, Coimbatore-32, Tamilnadu, India Email:<u>mathi.chandra303@gmail.com</u>
³ Department of Mathematics, Angel college of Engineering and Technology, Tirupur (Dt), Tamilnadu, India Email:<u>bharathikamesh6@gmail.com</u>

Abstract

In this paper we introduce and study the concept of (τ_b, τ_j) -fuzzy generalized ρ closed sets and studied some theorems based on this concept.

Keywords: (τ_i, τ_j) -fuzzy generalized ρ -closed sets where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$

1. INTRODUCTION

The fundamental concept of fuzzy sets was introduced by Zedeh in his classical paper[10]. Thereafter many investigations have been carried out in the general theoretical field and also in different application are as based in this concept. Chang

[4] used the concept of fuzzy sets to introduce fuzzy topological spaces and several other authors continued the investigation of such spaces .Devi et al [5] introduced fuzzy generalized α -closed sets and investigated its applications .

In this paper first we introduce (τ_i, τ_j) fuzzy generalized ρ -closed sets where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$ in Section 3 and studied some of its applications.

2. PRELIMINARIES

Let X be a non empty set and I=[0,1]. A fuzzy set in X is a mapping from X into I. The null fuzzy set 0 is the mapping from X into I which assumes only the value 0 and fuzzy set 1 is a mapping from X into I which takes the value 1 only. The union $\cup A_{\alpha}$ (resp. intersection $\cap A_{\alpha}$) of a family { $A_{\alpha} : \alpha \in \land$ } of fuzzy sets of X is defined to be the mapping sup A_{α} (resp. Inf A_{α}). A fuzzy set A of X contained in a fuzzy set B of X is denoted by $A \leq B$ if and only if $A(x) \leq B(x)$ for each x. The complement A^c of a fuzzy set A of X is 1-A defined by (1-A)(x), for each $x \in X$. A fuzzy point x_{β} in X is a fuzzy set in X defined by

 $x_{\beta}(y) = \{\beta(\beta \in (0,1]; \text{ for } y = x (y \in X))\}$

 $\{0; other wise\}$

x and β are respectively, called the support and value of x_{β} . A fuzzy point $x_{\beta} \in A$ if and only if $\beta \leq A(x)$. A fuzzy set A is the union of all fuzzy points which belongs to A.

Definition 2.1[5] Let (X, τ) be a fuzzy topological space. A fuzzy set λ in X is called (i) fuzzy generalized α -closed (in short fg α c) $\Leftrightarrow \alpha$ Cl (λ) $\leq \mu$ whenever $\lambda \leq \mu$ and μ is a fuzzy α -open set. (ii) fuzzy generalized α *-closed (in short fg α *c) $\Leftrightarrow \alpha$ Cl (λ) \leq Int (μ) whenever $\lambda \leq \mu$ and μ is a fuzzy α -open set

FUZZY PAIRWISE GENERALIZED ρ-CLOSED SETS...

(iii) fuzzy generalized α^{**} -closed (in short $fg\alpha^{**}c) \Leftrightarrow \alpha Cl(\lambda) \leq Int Cl(\mu)$ whenever $\lambda \leq \mu$ and μ is a fuzzy α -open set.

Definition 2.2[7] Let λ be a fuzzy set in a fuzzy bi topological space(in short fbts) X. The fuzzy set λ is called

(i) a (τ_i, τ_j) fuzzy semi-open(briefly (τ_i, τ_j) -fso)set of X if there exist a $\nu \in \tau_i$ such that $\nu \le \lambda \le \tau_j$ -Cl(ν)

(ii) a (τ_i, τ_j) fuzzy semi-open(briefly (τ_i, τ_j) -fsc)set of X if there exist a $v^c \in \tau_i$ such that τ_j -Int $(v) \le \lambda \le v$

The set of all (τ_i, τ_j) -fso(resp. (τ_i, τ_j) -fsc) sets of a fbts X will be denoted by (τ_i, τ_j) -FSO(X)(resp. (τ_i, τ_j) -FSC(X))

Definition 2.3 [8] A mapping f: $(X, \tau_i, \tau_j) \rightarrow (Y, \sigma_k, \sigma_l)$ is called (τ_i, τ_j) fuzzy pair wise pre semi closed if the image of every (τ_i, τ_i) fuzzy semi-closed set in X is (τ_i, τ_i) fuzzy semi-closed in Y.

2. (τ_i, τ_j) FUZZY GENERALIZED ρ -CLOSED SETS, Where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$

Definition 3.1: Let (X, τ_i, τ_j) be a fuzzy bi topological space . A fuzzy set λ in X is called

(i) (τ_i, τ_j) fuzzy generalized α -closed if and only if $\tau_j - \alpha Cl(\lambda) \le \mu$ when ever $\lambda \le \mu$ and μ is τ_i -fuzzy α -open.

(ii) (τ_i, τ^*_j) fuzzy generalized α -closed if and only if τ_j -Cl $(\lambda) \le \mu$ whenever $\lambda \le \mu$ and μ is τ_i -fuzzy α -open.

(iii) (τ^*_i, τ_j) fuzzy generalized α -closed if and only if $\tau_j - \alpha Cl(\lambda) \le \mu$ whenever $\lambda \le \mu$ and μ is τ_i -fuzzy open.

(iv) (τ_i, τ_j) fuzzy generalized α^* -closed if and only if $\tau_j - \alpha Cl(\lambda) \leq \tau_i$ - Int (μ) when ever $\lambda \leq \mu$ and μ is τ_i -fuzzy α -open.

(v) (τ_i, τ_j) fuzzy generalized α^{**} -closed if and only if $\tau_j - \alpha Cl(\lambda) \leq \tau_i - Int (\tau_i - Cl(\mu))$ whenever $\lambda \leq \mu$ and μ is τ_i -fuzzy α -open

Remark 3.2 : By setting $\tau_i = \tau_j$ in the definition 3.1 (a)(τ_i, τ_j) fuzzy generalized α -closed set is fuzzy generalized α -closed set [5] (b)the definition 3.1, (ii) and (iii) coincide (c) (τ_i, τ_j) fuzzy generalized α^* -closed is fuzzy generalized α^* -closed set [5]

(d) (τ_i, τ_j) fuzzy generalized α^{**} -closed is fuzzy generalized α^{**} -closed set [5]

Theorem 3.3: Let (X, τ_i, τ_j) be a fuzzy bi topological space

(i) If γ and δ are (τ_i, τ_j) fuzzy generalized α -closed set then $\gamma \cup \delta$ is also (τ_i, τ_j) fuzzy generalized α -closed set.

(ii) If σ is τ_i – fuzzy α - closed subset of X, then σ is (τ_i, τ_i) fuzzy generalized α -closed set.

(iii) If σ is τ_i -fuzzy closed subset of X, then σ is (τ_i , τ_i) fuzzy generalized α -closed set.

(iv) If σ is τ_i – fuzzy α - closed subset of X, then σ is (τ_i^*, τ_i) fuzzy generalized α -closed set

(v) If σ is τ_i -fuzzy closed subset of X, then σ is (τ_i, τ_i^*) fuzzy generalized α -closed set.

Proof: (i) Suppose μ be a τ_i –fuzzy α -open set greater than $\gamma \cup \delta$. Since γ and δ are (τ_i, τ_j) fuzzy generalized α -closed sets, $\tau_j - \alpha Cl(\gamma) \leq \mu$ and $\tau_j - \alpha Cl(\delta) \leq \mu$. Also $\tau_j - \alpha Cl(\gamma \cup \delta) \leq \tau_j - \alpha Cl(\gamma) \cup \tau_j - \alpha Cl(\delta) \leq \mu$. and hence $\gamma \cup \delta$ is (τ_i, τ_j) fuzzy generalized α -closed set.

(ii) Let μ be a τ_i -fuzzy α -open set such that $\sigma \leq \mu$. Since σ is τ_j -fuzzy α - closed, thus τ_j - $\alpha Cl(\sigma) = \sigma \leq \mu$ and hence σ is (τ_i, τ_i) fuzzy generalized α -closed set.

(iii) Since every fuzzy closed set is fuzzy α -closed and using (ii) the proof follows.

(iv) Let μ be a τ_i -fuzzy open set such that $\sigma \leq \mu$. Since σ is fuzzy τ_j -fuzzy α - closed τ_j - $\alpha Cl(\sigma) = \sigma \leq \mu$ and hence σ is (τ_i^*, τ_j) fuzzy generalized α -closed set.

(v) Let μ be a τ_i -fuzzy α -open set such that $\sigma \leq \mu$. Since σ is fuzzy τ_j -fuzzy closed τ_j -Cl(σ)= $\sigma \leq \mu$ and hence σ is (τ_i , τ_i^*) fuzzy generalized α -closed set.

The converse of the Theorem 3.3(ii), (iii), (iv) and (v) are need not be true in the following example.

Example 3.4: (i) (τ_1, τ_2) fuzzy generalized α -closed set need not be τ_2 -fuzzy α -closed set. Let X = {a,b}, I = [0 1] and the functions f_1 , f_2 , f_3 , $f_4 : X \to I$ be defined as $f_1(a) = .5$, $f_1(b) = .3$, $f_2(a) = .6$, $f_2(b) = .5$, $f_3(a) = 1$, $f_3(b) = 0$ and $f_4(a) = 1$, $f_4(b) = .6$. Consider $\tau_1 = \{0, 1, f_1, f_2\}$ and $\tau_2 = \{0, 1, f_3, f_4\}$ now (X, τ_1, τ_2) forms fuzzy bitopological space. In this fuzzy bitopological space the fuzzy set $\lambda: X \to I$ defined as $\lambda(a) = .9$ and $\lambda(b) = 1$ is (τ_1, τ_2) fuzzy generalized α -closed set but not τ_2 -fuzzy α -closed set.

(ii) In the fuzzy bi topological space defined (i) the function μ : X \rightarrow I defined as $\mu(a) = .5$ and $\mu(b)=.5$ is (τ_1, τ_2) fuzzy generalized α -closed set but not τ_2 -fuzzy closed set.

(iii) The fuzzy set λ defined in (i) is (τ_1^*, τ_2) fuzzy generalized α -closed set but not τ_2 -fuzzy α -closed set.

(iv) The fuzzy set v: $X \rightarrow I$ defined as v(a)= .4 and v(b)= .7 in the fuzzy bi topological space (i) is (τ_1^* , τ_2) fuzzy generalized α -closed set but not τ_2 -fuzzy closed.

Theorem 3.5 : Let (X, τ_i, τ_j) be a fuzzy bi topological space

(i) If γ is (τ_i, τ_j) fuzzy generalized α *-closed set ,then it is (τ_i, τ_j) fuzzy generalized α -closed set.

(ii) If γ is (τ_i, τ_j) fuzzy generalized α -closed set ,then it is (τ_i, τ_j) fuzzy generalized α^{**} -closed set.

Proof: (i) Let $\gamma \leq \mu$, μ be a fuzzy α -open set in τ_i . Since γ is (τ_i, τ_j) fuzzy generalized α *-closed set, we have $\tau_i - \alpha Cl(\gamma) \leq \tau_i$ - Int $(\mu) \leq \mu$. Hence γ is (τ_i, τ_i) fuzzy generalized α -closed set.

(ii) Let $\gamma \leq \mu$, μ be a fuzzy α -open set in τ_i . Since γ is (τ_i, τ_j) fuzzy generalized α -closed set, we have $\tau_j - \alpha Cl(\gamma) \leq \mu \leq \tau_i$ - Int $(\tau_i - Cl (\tau_i - Int (\mu))) \leq \tau_i$ - Int $(\tau_i - Cl (\mu))$. Hence γ is (τ_i, τ_j) fuzzy generalized α^{**} -closed set.

Converse of the Theorem 3.5 (i) and (ii) are not true in the following example.

Example 3.6: (i) The (τ_1, τ_2) fuzzy generalized α -closed set need not (τ_1, τ_2) fuzzy generalized α *closed set. The fuzzy set ν defined in Example 3.4 (iv) is (τ_1, τ_2) fuzzy generalized α -closed set but not (τ_1, τ_2) fuzzy generalized α *-closed set

(ii) Let $X = \{a,b\}$, $I = [0 \ 1]$ and the functions $f_1, f_2, f_3 : X \to I$ be defined as $f_1(a) = .9$, $f_1(b) = .6$, $f_2(a) = 1$, $f_2(b) = 0$ and $f_3(a) = 1$, $f_3(b) = .6$. Consider $\tau_1 = \{0, 1, f_1\}$ and $\tau_2 = \{0, 1, f_2, f_3\}$ now (X, τ_1, τ_2) forms fuzzy bitopological space. In this fuzzy bitopological space the fuzzy set $\lambda : X \to I$ defined as $\lambda(a) = .9$ and $\lambda(b) = 1$ is (τ_1, τ_2) fuzzy generalized α **-closed set but not(τ_1, τ_2) fuzzy generalized α -closed set.

Theorem 3.7 : Let (X, τ_i, τ_j) be a fuzzy bi topological space

(i) If γ is (τ_i, τ_j) fuzzy generalized α -closed set in $(X, \tau_i^{\alpha}, \tau_j)$, then it is (τ_i, τ_j) fuzzy generalized α -closed set.

(ii) If γ is (τ_i, τ_i) fuzzy generalized α -closed set, then it is (τ_i^*, τ_i) fuzzy generalized α -closed set.

(iii) If γ is (τ_i, τ_j^*) fuzzy generalized α -closed set , then it is. (τ_i, τ_j) fuzzy generalized α -closed set.

Proof: (i) Let $\gamma \leq \mu$, μ be fuzzy α -open set in τ_i . Since γ is $(\tau_i^{\alpha}, \tau_j)$ fuzzy generalized α -closed set, we have $\tau_j - \alpha Cl(\gamma) \leq \mu$. Hence γ is (τ_i, τ_j) fuzzy generalized α -closed set.

(ii) Let $\gamma \leq \mu$, μ be fuzzy -open set in τ_i . Since every fuzzy open set is fuzzy α -open and γ is (τ_i, τ_j) fuzzy generalized α -closed set, we have $\tau_j - \alpha Cl(\gamma) \leq \mu$. Hence γ is (τ_i^*, τ_j) fuzzy generalized α -closed set.

(iii) Let $\gamma \leq \mu$, μ is fuzzy α -open set in τ_i . Since γ is (τ_i, τ_j^*) fuzzy generalized α -closed set, we have $\tau_j - \alpha Cl(\gamma) \leq \tau_j - Cl(\gamma) \leq \mu$. Hence γ is (τ_i, τ_j) fuzzy generalized α -closed set. Converse of Theorem 3.7 (ii) and (iii) are not true in the following example.

Example 3.8: (i) Consider the fuzzy bitopological space defined in 3.4 (i). In this fbts the fuzzy set $\lambda: X \rightarrow I$ defined as $\lambda(a) = .9$ and $\lambda(b) = 1$ is (τ_1^*, τ_2) fuzzy generalized α -closed set but not (τ_1, τ_2) fuzzy generalized α -closed set

(ii) (τ_1, τ_2) fuzzy generalized α -closed set need not be (τ_1, τ_2^*) fuzzy generalized α -closed set. Let X = {a,b}, I = [0 1] and the functions $f_1, f_2, f_3, f_4 : X \rightarrow I$ be defined as $f_1(a) = .5, f_1(b) = .3, f_2(a) = .4, f_2(b) = .8, f_3(a) = .5, f_3(b) = .8$ and $f_4(a) = .4, f_4(b) = .3$. Also $f_5, f_6 : X \rightarrow I$ defined as $f_5(a) = .5, f_5(b) = .3$ and $f_6(a) = .6, f_6(b) = .5$. Consider $\tau_1 = \{0, 1, f_1, f_2, f_3, f_4\}$ and $\tau_2 = \{0, 1, f_5, f_6\}$ now (X, τ_1, τ_2) forms

FUZZY PAIRWISE GENERALIZED ρ-CLOSED SETS...

fuzzy bi topological space. In this fuzzy bi topological space the fuzzy set $\lambda: X \to I$ defined as $\lambda(a)=0$ and $\lambda(b)=.3$ is

 (τ_1, τ_2) fuzzy generalized α -closed set but not be (τ_1, τ_2^*) fuzzy generalized α -closed set.

Remark 3.9:Let (X, τ_i, τ_j) be a fuzzy bi topological space . A (τ_i, τ_j) fuzzy generalized α -closed sets are generally not equal to (τ_i, τ_i) fuzzy generalized α - closed sets.

Example 3.10: Consider the fuzzy bi topological space defined in Example 3.8.and the fuzzy set λ : X \rightarrow I defined as $\lambda(a)=0$ and $\lambda(b)=.3$.In this example the (τ_1, τ_2) fuzzy generalized α -closure of λ is λ but (τ_2, τ_1) fuzzy generalized α -closure of λ is (.5, .7). Hence (τ_1, τ_2) fuzzy generalized α -closed sets are generally not equal to (τ_2, τ_1) fuzzy generalized α -closed sets.

Theorem 3.11: If $\tau_i \subseteq \tau_j$ in (X, τ_i, τ_j) , then $G\rho(\tau_i, \tau_j) \supseteq G\rho(\tau_j, \tau_i)$, where $G\rho(\tau_i, \tau_j)$ denote the class of all (τ_i, τ_j) -fuzzy generalized ρ -closed sets where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$.

Proof: Let $\rho = \alpha$ and γ be a (τ_j, τ_i) fuzzy generalized α -closed set and μ be a τ_i -fuzzy α -open set such that $\gamma \leq \mu$. Since $\tau_i \subseteq \tau_j$, it follows that μ is τ_j - fuzzy α -open and τ_j - $\alpha Cl(\gamma) \leq \tau_i$ - $\alpha Cl(\gamma)$. Then τ_j - $\alpha Cl(\gamma) \leq \mu$. Therefore γ is fuzzy (τ_i, τ_j) - generalized α -closed set. When $\rho \in \{\alpha^*, \alpha^{**}\}$ the proof is similar.

Theorem 3.12: Let (X, τ_i, τ_j) be any fuzzy bi topological space and $\tau_j \subseteq \tau_i$. Let $F\alpha O(\tau_i)$ stand for the family of all τ_i -fuzzy α -open sets of X and F $\alpha C(\tau_j)$ stands for the family of all τ_j - fuzzy α - closed subsets of X. Then the following conditions are equivalent (i) $F\alpha O(\tau_i) = F \alpha C(\tau_j)$

(ii) The fuzzy set λ of X is (τ_i, τ_i) fuzzy generalized α -closed.

Proof: (i) \Rightarrow (ii) Assume that $F\alpha O(\tau_i) = F \alpha C(\tau_j)$. Consider $\lambda \in I^X$, $\lambda \leq \mu \ \mu \in F\alpha O(\tau_i) \Rightarrow \tau_j - \alpha Cl(\lambda) \leq \tau_j - \alpha Cl(\mu) = \mu$. Hence λ is (τ_i, τ_j) fuzzy generalized α -closed. (ii) \Rightarrow (i) Let us assume that $\lambda \in I^X$ is a (τ_i, τ_j) fuzzy generalized α -closed set in X. Let $\lambda \in F \alpha O(\tau_i)$. Since $\lambda \leq \lambda$ and λ is (τ_i, τ_j) fuzzy generalized α -closed, $\tau_j - \alpha Cl(\lambda) \leq \lambda$ but $\lambda \leq \tau_j - \alpha Cl(\lambda) = \lambda$ implies $\lambda \in F \alpha C(\tau_j)$ $\Rightarrow F\alpha O(\tau_i) \subseteq F \alpha C(\tau_j) = \lambda = 0$ ($\tau_j = 0$ ($\tau_j = 0$) ($\tau_j = 0$

Theorem 3.13: Let (X, τ_i, τ_j) be any fuzzy bi topological space and λ be any fuzzy set in X. Then the following statements are equivalent. (i) λ^c is (τ_i, τ_j) fuzzy generalized α -closed (ii) λ is (τ_i, τ_j) fuzzy generalized α -open

Proof: (i) \Rightarrow (ii) Let $\lambda \ge \mu$ where μ is fuzzy τ_i fuzzy α -closed, $\lambda^c=1-\lambda \le 1-\mu$. Since λ^c is (τ_i, τ_j) fuzzy generalized α -closed, $\tau_j - \alpha Cl(\lambda^c) \le 1 - \mu \Rightarrow 1-\tau_j - \alpha Int(\lambda) \le 1 - \mu$. Hence $\tau_j - \alpha Int(\lambda) \ge \mu$ when ever $\lambda \ge \mu$, μ is τ_i -fuzzy α - closed. Therefore λ is (τ_i, τ_j) fuzzy generalized α -open.

 $\begin{array}{ll} (ii) \Rightarrow (i) \quad Let \ \lambda^c \leq \mu \ , \ \mu \ is \ \tau_i \ -fuzzy \ \alpha \ open \Rightarrow \lambda \geq 1 - \ \mu \ , \ 1 - \mu \ \ is \ \tau_i \ -fuzzy \ \alpha \ -closed. \\ By \ (ii) \tau_j \ -\alpha \\ Int(\lambda) \ \geq 1 - \ \mu \ \Rightarrow \ 1 - \tau_j \ -\alpha Int(\lambda) \ \leq \ \mu, \ \ \tau_j \ -\alpha Cl(1 - \lambda) \ \leq \mu \\ where \ \ \mu \ \ is \ \tau_i \ -fuzzy \ \alpha \ -open. \\ Hence \ \lambda^c \ is(\tau_i, \ \tau_j) \ fuzzy \ generalized \ \alpha \ -closed. \end{array}$

Theorem 3.14: Let (X, τ_i, τ_j) be any fuzzy bi topological space .For each point λ of (X, τ_i, τ_j) a singleton set $\{\lambda\}$ is τ_i -fuzzy closed (or) λ^c is (τ_i, τ_j) fuzzy generalized α -closed.

Proof: Suppose $\{\lambda\}$ is not τ_j -fuzzy closed. Since λ^c is not τ_j -fuzzy open, a τ_j -fuzzy open set greater than λ^c is only 1. Then τ_j - $\alpha Cl(\lambda) \leq \tau_j$ - $Cl(\lambda) \leq 1$ and hence λ^c is (τ_i, τ_j) fuzzy generalized α -closed.

Theorem 3.15 : Let τ_i^{α} be the family of all $\tau_i - \alpha$ closed set in (X, τ_i, τ_j) i =1,2. Then the following conditions are equivalent

(i) In $(X, \tau_i, \tau_j) \xrightarrow{\alpha}_{T_i} \tau_j^{\alpha}$.

(ii) λ is (τ_i, τ_j) fuzzy generalized α -closed and (τ_j, τ_i) fuzzy generalized α -closed for any subset λ of X.

Proof: (i) \Rightarrow (ii) Let λ be any fuzzy set in a fbts X and μ be τ_j - fuzzy α -open set such that $\lambda \leq \mu$. Since $\tau_i^{\alpha} = \tau_j^{\alpha}$, τ_j - $\alpha Cl(\lambda) \leq \mu$. That is τ_i - $\alpha Cl(\lambda) \leq \mu$. Hence λ is (τ_j, τ_i) fuzzy generalized α -closed. Similarly we can prove λ is (τ_i, τ_j) fuzzy generalized α -closed.

 $\begin{array}{l} (ii) \Rightarrow (i) \text{ Suppose that } \lambda \text{ is } \quad \tau_j \text{ - fuzzy } \alpha \text{ - open } . \text{Since } \lambda \text{ is } (\; \tau_j \; , \tau_i) \text{ fuzzy generalized } \alpha \text{ -closed } \quad , \; \tau_i \text{ - } \\ \alpha Cl(\; \lambda) \leq \lambda \text{ therefore } \lambda \text{ is } \tau_i \text{ - fuzzy } \alpha \text{ - closed } \text{ and hence } \lambda \in \tau_i^{\alpha} \end{array}$

Conversely let λ be an element in τ_i^{α} , by Theorem 3.3 (ii) λ^c is (τ_i, τ_j) fuzzy generalized α -closed $\tau_j - \alpha Cl(\lambda^c) \leq \lambda^c$. Therefore λ^c is τ_j - fuzzy α - closed and hence λ is τ_j - fuzzy α - open . Hence $\tau_i^{\alpha} = \tau_i^{\alpha}$.

Theorem 3.16: Let λ and μ be any two fuzzy sets of a fbts X. If λ is fuzzy generalized α -closed and $\lambda \le \mu \le \tau_i - \alpha Cl(\lambda)$ then μ is (τ_i, τ_i) fuzzy generalized α -closed.

Proof: If λ is (τ_i, τ_j) fuzzy generalized α -closed set and $\lambda \le \mu \le \tau_j - \alpha Cl(\lambda)$, $\Rightarrow \tau_j - \alpha Cl(\mu) \le \tau_j - \alpha Cl(\lambda)$. Since λ is (τ_i, τ_j) fuzzy generalized α -closed, $\tau_j - \alpha Cl(\lambda) \le \nu$ where ν is τ_i -fuzzy α - open set. Hence $\tau_i - \alpha Cl(\mu) \le \nu$ when ever $\mu \le \nu$. There fore μ is (τ_i, τ_j) fuzzy generalized α -closed.

If λ be fuzzy set of X and μ be fuzzy set of Y then ($\lambda \times \mu$) (x, y) = min($\lambda(x), \mu(y)$) for each (x, y) \in X × Y. By[1] let λ be a fuzzy closed set of a fuzzy topological space X and μ be a fuzzy closed set of a fuzzy topological space Y. Then $\lambda \times \mu$ is a fuzzy closed set of the fuzzy product topological space X × Y. By [5] every fuzzy closed set is fuzzy generalized α -closed set.

Also by[1] Let X and Y be fuzzy topological space such that X is product relative to Y then for a fuzzy set λ of X and a fuzzy set μ of Y.

 $Cl(\lambda \times \mu) = Cl(\lambda) \times Cl(\mu)$

Int $(\lambda \times \mu) = \text{Int}(\lambda) \times \text{Int}(\mu)$

Theorem 3.17 : If (X, τ_i, τ_j) and (Y, η_k, η_l) are fuzzy bit opological spaces such that X is a product related to Y, then $\lambda \times \mu$ of a (τ_i, τ_j^*) fuzzy generalized α -open set λ of X and (η_k, η_l^*) -fuzzy generalized α -open set μ of Y is a $(\sigma m, \sigma_n^*)$ fuzzy generalized α -open set of the fuzzy product space $(X \times Y, \sigma_m, \sigma_n^*)$, where σ_r is the fuzzy product topology generalized by τ_r and η_r .

Definition 3.18: Let λ be a fuzzy set in a fbts X.

(i) The (τ_i, τ_j) fuzzy generalized α - interior of λ is denoted by (τ_i, τ_j) -fg α Int (λ) and is defined by (τ_i, τ_j) -fg α Int $(\lambda) =$ Sup { $\delta: \delta \leq \lambda$, δ is (τ_i, τ_j) -fg α -open} and

(ii) The (τ_i, τ_j) fuzzy generalized α - closure of λ is denoted by (τ_i, τ_j) -fg α Cl(λ) and is defined by (τ_i, τ_j) -fg α Cl(λ) = Inf { $\delta: \delta \ge \lambda$, δ is (τ_i, τ_j) -fg α -closed}

REFERENCES

- K.K.Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math .Anal.App.82(1981),14-32.
- G.Balasubramanian, P.Sundaram, On some generalization of continuous functions, Fuzzy Sets and Systems 86 (1997) 93-100
- 3 . A.S. Bin Shahna, On fuzzy strong semi-continuity and fuzzy pre continuity Fuzzy Sets and System, 44(1991),303-308

FUZZY PAIRWISE GENERALIZED p-CLOSED SETS...

4.C.L.Chang, Fuzzy topological spaces, J.Math, Anal.Appl.(1968)182-190

- 5. R.Devi K.Bhuvaneswari and G.Balasubramanian On fuzzy generalized α-extremally disconnectedness Bull.Cal.Math.Soc(accepted)
- P.M Pu and Y.M Lin, Fuzzy topology I .neighborhood structure of a fuzzy point and Moore-Smith convergence, J.Math. Anal.Appl. 76(1980)571-599
- 7. P.Sampath Kumar Semi-open sets, semi-continuity and semi open mappings in fuzzy bi topological spaces, Fuzzy Sets and Systems 64 (1994) 421-426
- S.S. Thakur, U.D Tapi and R.Malviya ,Pair wise fuzzy semi closed mappings. J.Indian Acad.Mah.Vol.20,No.2(1998)
- H.Maki, R.Devi and K.Balachandran, Generalized α-closed sets in topology. Bulletin of Fukuoka University of Education, Vol 42, part III, 13-21(1993)
- 10. L.A. Zadeh, Fuzzy Sets. Inform. and Control 8(1965),338-353.