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Abstract Motivated by Candes and Donoho′s work (Candés, E J, Donoho, D

L, Recovering edges in ill-posed inverse problems: optimality of curvelet frames.

Ann. Stat. 30, 784-842 (2002)), this paper is devoted to giving a lower bound

of minimax mean square errors for Riesz fractional integration transforms and

Bessel transforms.

Keywords Bessel transform; Riesz transform; error; noise.

AMS(2000) subject classifications 42C15, 42C40

1. Introduction

The linear inverse problem for a statistical model with additive noise plays

important roles in scientific settings ranging from medical imaging to physical

chemistry ([1]). More precisely, consider the problem of recovering an image f

from the noisy data

Y = Kf + εW. (1.1)

Here, f belongs to ε2(A), which is the function space consisting of compactly

supported and twice continuously differentiable away from a smooth edge; W

denotes a Wiener sheet; ε is a noisy level; K stands for a linear operator from

L2(R2) to another Hilbert space. We use sup
V
E∥f̂−f∥22 to denote the mean square

error on the function space V for the L2 risk andM(ε, V ) := inf
f̂

sup
V
E∥f̂−f∥22 to
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represent the minimax mean square error on the function space V for the L2 risk.

In 2010, Colonna and Easley use shearlets to deal with the inverse problem (1.1),

when K is the Radon transform([3]). They give an upper bound of the mean

square error ε
4
5 (log(ε−1)) on the space ε2(A) for the L2 risk. Moreover, they

show a lower bound to the minimax mean square error ε
4
5 (log(ε−1))−

2
5 for that

class of functions, which means their upper bound essentially optimal, ignoring

log factor.

Note that Riesz fractional integration transforms and Bessel transforms

play important roles in both theoretical analysis and practical applications. Hu

and Liu ([5])apply shearlets to the inverse problem (1.1) for a family of linear

operators including Riesz fractional integration transforms and Bessel transforms.

Based on a shearlet shrinkage method, they obtain an upper bound of the mean

square error ε
2

3/2+2α (log(ε−1)) on the space ε2(A) for the L2 risk. The goal of

this paper is to give a lower bound of the minimax mean square error for Riesz

fractional integration transforms and Bessel transforms. It turns out that the

above mentioned upper bounds are optimal, ignoring log factor.

2. Main Theorem

To introduce our main theorem, we begin with the definitions of Riesz

fractional integration transforms and Bessel transforms ([6]).

Definition 1 Riesz fractional integration transform Iα is defined by

Iα(f)(x) = Cα

∫
R2

f(y)

|x− y|2−α
dy (0 < α < 1

2
)

with some normalizing constant Cα ; the Bessel operator Bα by

Bαf = Gα ∗ f (0 < α < 2)

with Gα(x) = Aα

K1−α
2
(|x|)

|x|1−α
2

∈ L1(R), where Aα is a normalizing constant and

Lin Hu

74



3

Kv(z) represents McDonald function defined as

Kv(z) =
1

2
(
z

2
)−v

∫ ∞

0

tv−1e−t− z2

4t dt.

The following two lemmas play an important role in our discussion.

Lemma 1 ([7]) Let f ∈ Lp(R2) and Iα be the Riesz fractional integration trans-

form. If 1 < p <
2

α
and

1

q
=

1

p
− α

2
, then there exist a constant C > 0 such

that

∥Iαf∥q ≤ C∥f∥p.

Lemma 2 ([2, 4]) For N ≥ 1, let ξ ∈ {0, 1}N and X ∼ N(ξ, V ) be a multivariate

Gaussian vector. Assume that V is invertible such that τ 2i = V ar(Xi|Xk, k ̸=

̸= i) =
1

(V −1)ii
≥ 1 for all 1 ≤ i ≤ N . Then there is an absolute constant B such

that

inf
ξ̂

sup
ξ∈{0,1}N

E∥ξ̂ − ξ∥22 ≥ BN.

Now, we are ready to state the main theorem of this paper:

Theorem If the operator K in (1.1) take Iα or Bα, then there exits a constant

C > 0 such that

M(ε, ε2(A)) ≥ Cε
2

3/2+2α (ε→ 0).

Proof. Firstly, we consider Riesz fractional integration transform Iα: Let h be a

smooth function of variable t with compact support contained in [0, 2π] and

hm,j(t) = m− 2α+2
2α+1h(mt− 2πj), j = 0, 1, · · · ,m− 1

for m ≥ 1. We introduce a polar coordinates (r, θ) with origin at (
1

2
,
1

2
). Set

r0 =
1

4
, f0 := 1{r≤r0}, where 1A denotes the indicator function on a set A. Then

the functions

ψm,j := 1{r<hm,j+r0} − f0, j = 0, 1, · · · ,m− 1

are disjointly supported and ∥ψm,j∥22 = ∥hm,j∥1 = m− 4α+3
2α+1∥h∥1 ∼ m− 4α+3

2α+1 . Here

and after, A ∼ B denotes A ≤ CB and A ≥ CB for some constant C > 0).
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Let

Hm := {f = f0 +
m−1∑
j=0

ξjψm,j}.

Then Hm ⊆ ε2(A), which implies

M(ε, ε2(A)) ≥ M(ε,Hm) := inf
f̂

sup
Hm

E∥f̂ − f∥22. (2.1)

So, the problem reduces to estimate f ∈ Hm. Furthermore, we can restrict the

estimator of the form:

f̂ = f0 +
m−1∑
j=0

ξ̂jψm,j.

In fact, let Pm denote the L2 projection on the smallest affine subspace

containing Hm. Then for f ∈ Hm,

∥Pmf̂ − f∥22 = ∥Pmf̂ − Pmf∥22 ≤ ∥f̂ − f∥22.

This implies the risk of a general estimator f̂ greater than or equal to that of a

corresponding estimator Pmf̂ . Moreover,

∥f̂ − f∥22 = ∥
m−1∑
j=0

(ξ̂j − ξj)ψm,j∥22 ∼ ∥ξ̂ − ξ∥22∥ψm,j∥22 ∼ m− 4α+3
2α+1∥ξ̂ − ξ∥22 (2.2)

due to the orthogonality of ψm,j and the fact that ∥ψm,j∥22 ∼ m− 4α+3
2α+1 . Hence, it

is sufficient to estimate ξ ∈ {0, 1}M .

Let gj := Iαψm,j. Applying Lemma 1 to gj with q = 2, p =
2

1 + α
, one has

∥gj∥22 = ∥Iαψm,j∥22 ≤ ∥ψm,j∥2 2
1+α

. This with the fact ∥ψm,j∥2 2
1+α

= ∥hm,j∥1+α
1 ≤

≤ m− (4α+3)(α+1)
2α+1 leads to

∥gj∥22 ≤ m− (4α+3)(α+1)
2α+1 .

Because a Riesz fractional integration transform Iα is invertible, the functions gj

are linearly independent. Let Vm stand for the smallest affine space containing

Iαf0 +
m−1∑
j=0

θjgj for arbitrary {θj}m−1
j=0 ∈ {0, 1}m. Note that, for each function

v(x) ∈ L2(R2) orthogonal to Vm, the law of
∫
R2 v(x)Y dx is N(0, ∥v∥2) indepen-

dently of ξ. So, the projection of the Riesz fractional integration data on the

span Vm is sufficient for ξ.
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Since {gj}m−1
j=0 is linear independent, the linear functions ⟨gj, f −Rf0⟩ give

a nondegenerate set of affine coordinates for f ∈ Vm. For each j, define

Yj := ⟨Y, gj⟩ − ⟨Iαf0, gj⟩ =
m−1∑
i=0

⟨gj, gi⟩ξi +
m−1∑
i=0

ε⟨W, gi⟩.

Then the vector Y := (Yj)
m−1
j=0 gives a nondegenerate set of affine coordinates for

the projection of the Riesz fractional integration data on the space Vm. Hence,

Y = (Yj)
m
j=0 is a sufficient statistic for ξ and Y ∼ N(Gξ, ε2G), where G is the

matrix with the i, j element Gj,i = ⟨gj, gi⟩.

Because gj is linearly independent, the matrix G is invertible. Define X :=

= G−1Y , then X ∼ N(ξ, ε2G−1). Note that Y is a sufficient statistic for ξ, so

is X. We may restrict our attention to estimator X. Let V := ε2G−1 be the

covariance matrix of X and

τ 2j := V ar(Xj|Xk, k ̸= j)

be the conditional variance of Xi given the other coordinates. Take m such that

m ∼ ε
− 2α+1

( 32+2α)(α+1) . Then ∥gj∥2 ≤ m− (4α+3)(α+1)
2α+1 ≤ ε2 for all 1 ≤ j ≤ m − 1 and

τ 2j = V ar(Xj|Xk, k ̸= j) =
1

(V −1)jj
=

1

ε−2(G)jj
= ε2∥gj∥−2 ≥ 1. By Lemma 2,

inf
ξ̂

sup
ξ∈{0,1}m

E∥ξ̂j − ξj∥22 ≥ Bm.

This with (2.1) and (2.2) shows

M(ε, ε2(A)) ≥ inf
f̂

sup
Hm

E∥f̂ − f∥22 ≥ Bm− 2α+2
2α+1 .

Using m ∼ ε
− 2α+1

( 32+2α)(α+1) . one receives M(ε, ε2(A)) ≥ Cε
2

3/2+2α . This completes

the proof for K = Iα.

It remains to conclude the theorem for K = Bα. By Definition 1, one has

Gα(x) =
Aα

2
α
2

1

|x|2−α

∫∞
0
t−

α
2 e−t−x2

4t dt ≤ C

|x|2−α
. Hence,

∥Bαψm,j∥2 = ∥Bα ∗ ψm,j∥2 ≤ ∥Iαψm,j∥2 ≤ m− (4α+3)(α+1)
2α+1

due to ψm,j > 0. Note that the Bessel operator Bα is invertible. Then the exactly
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same arguments as above show M(ε, ε2(A)) ≥ Cε
2

3/2+2α for Bessel transform Bα.

This completes the proof of our main theorem.
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