Semi-invariant Submanifolds of a General p-contact Hsu-metric Manifold

Ram Nivas¹ and Anurag Agnihotri²

Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India <u>rnivas@sify.com¹</u> and <u>anurag.anuagnihotri@gmail.com²</u>

Abstract

In 1972, Vanzura [5] defined and studied almost r-contact structure which is the generalization of (f, g, u, v, λ) -structure manifold introduced by Yano and Okumura [6]. Some properties of almost r-contact structure manifolds have also been studied by Nivas and Singh [4]. CR-structure manifolds have been defined and studied by Bejancu ([1], [2]) and many other geometers. In the present paper, semi- invariant submanifolds of general almost p-contact Hsu-metric manifold have been studied. The idea of CR-structure is

extended and certain interesting results have been obtained.

Keywords and Phrases: Semi-invariant submanifolds, p-contact Hsu-metric structure, Distributions, Integrability.

AMS Classification Code: 53B25, 53D10

1. Preliminaries:

Let M^{n+p} be an (n+p)-dimensional differentiable manifold of class C^{∞} . Suppose there exists on M^{n+p} a tensor field ϕ of type (1, 1), $p(C^{\infty})$ contravariant vector fields $\xi_1, \xi_2, \dots, \xi_p$ and $p(C^{\infty})$ 1-forms $\eta^1, \eta^2, \dots, \eta^p$ (*p* some finite integer) satisfying

(1.1)
$$\phi^2 = a^r I + \sum_{l=1}^p \eta^l \otimes \xi_l$$

where a' is any real or complex number not zero and r' a positive integer.

Also

(1.2)
(i)
$$\phi \xi_l = 0$$

(ii) $\eta^l \circ \phi = 0$
(iii) $\eta^l (\xi_m) + a^r \delta_m^l = 0$

where l, m = 1, 2, ..., p and δ_m^l denotes the Kronecker delta. Thus the manifold M^{n+p} in view of the equations (1.1) and (1.2) will be said to possess the general p-contact Hsu structure. Suppose further that the above manifold M^{n+p} admits a positive definite Riemannian metric g satisfying

(1.3)
$$g(\phi X, \phi Y) + a^r g(X, Y) + \sum_{l=1}^p \eta^l(X) \eta^l(Y) = 0$$

and consequently

(1.4)
$$g(\xi_l, Y) = \eta^l(Y), \quad l = 1, 2, \dots, p$$

Then the above manifold M^{n+p} will be called the general p -contact Hsu-metric structure manifold [3].

Let V^n be an *n*-dimensional differentiable manifold immersed differentiably in M^{n+p} . Let us assume that the vector fields ξ_l are tangents to V^n . We say that V^n is semi-invariant submanifold of M^{n+p} if there exist differentiable distributions D and D^{\perp} on V^n such that (i) $T(V^n) = \{D\} + \{D^{\perp}\} + \{\xi_l\}$ $\{D\}, \{D^{\perp}\}\$ and $\{\xi_l\}$ are mutually orthogonal and $T(V^n)$ is tangent bundle of V^n .

(*ii*) The distribution D is invariant by ϕ i.e.

$$\phi(D_x) = D_x$$
, for all x in V^n

(*iii*) The distribution $\{D^{\perp}\}$ is anti invariant by ϕ i.e.

$$\phi(D_x^{\perp}) \subset T_x^{\perp}(V^n)$$

where $T_x^{\perp}(V^n)$ denotes the normal space of V^n at $x \in V^n$ ([1], [2])

Suppose further that $\overline{\nabla}$ and ∇ are Levi-civita connections on M^{n+p} and V^n respectively. Then Gauss and Weingarten equations can be expressed as [2]

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y)$$

and

(1.5)

$$\overline{\nabla}_X V = -A_V X + \nabla_X^{\perp} V$$

where X, Y are arbitrary tangent vectors and V the vector field normal to V^n . Also h(X,Y) is second fundamental form and A_V the shape operator given by

(1.6)
$$g(A_V X, Y) = g(h(X, Y), V)$$

Let us denote by P,Q the projection morphisms of $T(V^n)$ on D and D^{\perp} respectively. Then we can write

(1.7)
$$X = PX + QX + \sum_{l=1}^{p} \eta^{l}(X)\xi_{l}$$

for any vector field X tangent to V^n . We can also write

(1.8)
$$\phi V = BV + CV$$

for V normal to V^n . We can also define maps $\psi: T(V^n) \to T(V^n)$ and $\omega: T(V^n) \to T(V^n)^{\perp}$ as follows

(1.9)
$$\psi X = \phi P X$$

(*ii*)
$$\omega X = \phi Q X$$

Thus in view of the equations (1.2), (1.7) and (1.9), it follows that

(1.10)
$$\phi X = \psi X + \omega X$$

Here ψX denotes the tangential part and ωX the normal part of ϕX .

We can also write

Operating (1.10) by ϕ and making use of the equations (1.1), (1.8) and (1.10), we get

$$a^{r}X + \sum_{l=1}^{p} \eta^{l}(X)\xi_{l} = \psi^{2}X + \omega\psi X + B\omega X + C\omega X$$

Comparison of tangential and normal vectors to V^n gives

(1.11)
(i)
$$\psi^2 = a^r I_n + \sum_{l=1}^p \eta^l \otimes \xi_l - B\omega$$

(ii) $\omega \psi + C\omega = 0$

In a similar manner, premultiplying the equation (1.8) by ϕ and making use of (1.1), (1.8) and (1.10), we get

(1.12)
(i)
$$C^2 = a^r - \omega B$$

(ii) $\psi B + BC = 0$

Hence we have

Theorem: Let M^{n+p} be an (n+p)-dimensional differentiable manifold admitting the general p-contact

Hsu structure and V^n be the semi-invariant manifold immersed differentiably in M^{n+p} . Then the structure induced on the submanifold is given by the equations (1.11) and (1.12).

2. Parallel Fields:

Let us now suppose that for the enveloping manifold M^{n+p} , the tensor field ϕ is parallel. Thus

$$(\nabla_X \phi) Y = 0$$

or

(2.1) $\overline{\nabla}_X \phi Y = \phi \overline{\nabla}_X Y$

In view of the equations (1.8) and (1.10), above equation takes the form

$$\overline{\nabla}_X \{ \psi Y + \omega Y \} = \phi \{ \nabla_X Y + h(X, Y) \}$$

or

(2.2) $\nabla_X \psi Y + h(X, \psi Y) - A_{\omega Y} X + \nabla_X \omega Y = \psi(\nabla_X Y) + \omega(\nabla_X Y) + Bh(X, Y) + Ch(X, Y)$ Comparison of tangential and normal fields in the above equation (2.2) yields

(2.3) (i)
$$(\nabla_X \psi)Y = A_{\omega Y}X + Bh(X,Y)$$

(*ii*)
$$(\nabla_X \omega)Y = Ch(X,Y) - h(X,\psi Y)$$

Further since ϕ is parallel on the enveloping manifold, we have

(2.4)
$$(\overline{\nabla}_X \phi) V = 0$$

Proceeding in a way similar to above and using (1.5), (1.6) and (1.8), we get

(2.5)
(i)
$$(\nabla_X B)V = A_{CV}X - \psi(A_VX)$$

(ii) $(\nabla_X C)V + h(X, BV) + \omega A_VX = 0$

3. Integrability Conditions:

In this section, we shall study integrability of distributions D and D^{\perp} . If $N_{\phi}(X,Y)$ and $N_{\psi}(X,Y)$ be the Nijenhuis tensors of ϕ and ψ respectively, we have in view of the equations (1.9), (1.10) and the definition of Nijenhuis tensor

(3.1)
$$N_{\phi}(X,Y) = N_{\psi}(X,Y) - \omega\{[\phi X,Y] + [X,\phi Y] - \psi[X,Y]\} + B\omega([X,Y]) + C\omega([X,Y])$$
for all vector fields X,Y in D.

For all vector fields Z on the enveloping manifold, we denote by tZ the tangential part of Z and $t^{\perp}Z$ by normal part of it. In view of the equation (3.1), we have

Theorem 3.1: The necessary and sufficient condition for the distribution D to be integrable is that

(i)
$$tN_{\phi}(X,Y) = N_{\psi}(X,Y)$$

(3.3)

(*ii*)
$$t^{\perp}N_{\phi}(X,Y) = -\omega\{[\phi X,Y] + [X,\phi Y] - \psi[X,Y]\}$$

for all X, Y in D.

Theorem 3.2: The necessary and sufficient condition for the distribution D to be integrable is that

(i)
$$t^{\perp}N_{\phi}(X,Y) = 0$$

and
(ii) $QN_{\mu}(X,Y) = 0$

and

for all X, Y in D.

Proof: If the distribution D is integrable, (3.3) (*i*) follows from (3.2)(*ii*). For the Nijenhuis tensor $N_{uv}(X,Y)$, we have

$$N_{\psi}(X,Y) = [\psi X,\psi Y] - \psi[\psi X,Y] - \psi[X,\psi Y] + \psi^{2}[X,Y]$$

for all X, Y in D.

Thus $N_{\psi}(X,Y) \in D$ and consequently $QN_{\psi}(X,Y) = 0$.

If $X, Y \in D^{\perp}$, we can show

$$N_{\psi}(X,Y) = -P([X,Y]).$$

Thus we have

Theorem 3.3: The necessary and sufficient condition for the distribution D^{\perp} to be integrable is that

 $N_{\mu\nu}(X,Y) = 0$, for all X, Y in D^{\perp} .

References:

- [1] Bejancu, A. (1981): On semi-invariant submanifolds of an almost contact metric manifold, Analele Stintifice ale Universitatii "Al I Cuza" din lasi, Vol. XXVII, pp. 17-21.
- [2] Bejancu, A. (1985): Geometry of CR-submanifolds, D. Reidal Publishing Company, Tokyo, Japan.
- [3] Mishra, R. S. (1984): *Structures on a differentiable manifold and their applications*, Chandrama Prakashan, 50-A, Balrampur House, Allahabad, India.
- [4] Nivas, R. and Singh, R. (1988): Almost r-contact structure manifolds, Demonstratio Mathematica, Poland, Vol. 21, no. 3, pp. 1-7.
- [5] Vanzura, J. (1972): Almost r-contact structure, Annali Delta Scuola Normale, Superiore, Di, Pisa, Senc III, Vol. 26, pp. 97-115.
- [6] Yano, K. and Okumura, M. (1970): On (f, g, u, v, λ) -structure, Kodai Math. Sem. Rep., Vol. 22, pp. 401-423.