Semi-invariant Submanifolds of a General p-contact Hsu-metric Manifold

Ram Nivas ${ }^{1}$ and Anurag Agnihotri ${ }^{2}$
Department of Mathematics and Astronomy,
University of Lucknow, Lucknow-226007, India
rnivas@sify.com ${ }^{1}$ and anurag.anuagnihotri@ gmail.com ${ }^{2}$

Abstract

In 1972, Vanzura [5] defined and studied almost r-contact structure which is the generalization of (f, g, u, v, λ)-structure manifold introduced by Yano and Okumura [6]. Some properties of almost r-contact structure manifolds have also been studied by Nivas and Singh [4]. CR-structure manifolds have been defined and studied by Bejancu ([1], [2]) and many other geometers. In the present paper, semi- invariant submanifolds of general almost p-contact Hsu-metric manifold have been studied. The idea of CR-structure is extended and certain interesting results have been obtained.

Keywords and Phrases: Semi-invariant submanifolds, p-contact Hsu-metric structure, Distributions, Integrability.

AMS Classification Code: 53B25, 53D10

1. Preliminaries:

Let M^{n+p} be an $(n+p)$-dimensional differentiable manifold of class C^{∞}. Suppose there exists on M^{n+p} a tensor field ϕ of type (1, 1), $p\left(C^{\infty}\right)$ contravariant vector fields $\xi_{1}, \xi_{2}, \ldots \ldots, \xi_{p}$ and $p\left(C^{\infty}\right)$ 1-forms $\eta^{1}, \eta^{2}, \ldots \ldots, \eta^{p}$ (p some finite integer) satisfying

$$
\begin{equation*}
\phi^{2}=a^{r} I+\sum_{l=1}^{p} \eta^{l} \otimes \xi_{l} \tag{1.1}
\end{equation*}
$$

where ' a ' is any real or complex number not zero and ' r ' a positive integer.
Also
(i) $\phi \xi_{l}=0$
(ii) $\eta^{l} \circ \phi=0$
(iii) $\quad \eta^{l}\left(\xi_{m}\right)+a^{r} \delta_{m}^{l}=0$
where $l, m=1,2, \ldots \ldots, p$ and δ_{m}^{l} denotes the Kronecker delta. Thus the manifold M^{n+p} in view of the equations (1.1) and (1.2) will be said to possess the general p-contact Hsu structure. Suppose further that the above manifold M^{n+p} admits a positive definite Riemannian metric g satisfying

$$
\begin{equation*}
g(\phi X, \phi Y)+a^{r} g(X, Y)+\sum_{l=1}^{p} \eta^{l}(X) \eta^{l}(Y)=0 \tag{1.3}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
g\left(\xi_{l}, Y\right)=\eta^{l}(Y), \quad l=1,2, \ldots \ldots, p \tag{1.4}
\end{equation*}
$$

Then the above manifold M^{n+p} will be called the general p-contact Hsu-metric structure manifold [3]. Let V^{n} be an n-dimensional differentiable manifold immersed differentiably in M^{n+p}. Let us assume that the vector fields ξ_{l} are tangents to V^{n}. We say that V^{n} is semi-invariant submanifold of M^{n+p} if there exist differentiable distributions D and D^{\perp} on V^{n} such that
(i) $T\left(V^{n}\right)=\{D\}+\left\{D^{\perp}\right\}+\left\{\xi_{l}\right\}$

Ram Nivas and A nurag Agnihotri

$\{D\},\left\{D^{\perp}\right\}$ and $\left\{\xi_{l}\right\}$ are mutually orthogonal and $T\left(V^{n}\right)$ is tangent bundle of V^{n}.
(ii) The distribution D is invariant by ϕ i.e.

$$
\phi\left(D_{x}\right)=D_{x}, \text { for all } x \text { in } V^{n}
$$

(iii) The distribution $\left\{D^{\perp}\right\}$ is anti invariant by ϕ i.e.

$$
\phi\left(D_{x}^{\perp}\right) \subset T_{x}^{\perp}\left(V^{n}\right)
$$

where $T_{x}^{\perp}\left(V^{n}\right)$ denotes the normal space of V^{n} at $x \in V^{n}$ ([1], [2])
Suppose further that $\bar{\nabla}$ and ∇ are Levi-civita connections on M^{n+p} and V^{n} respectively. Then Gauss and Weingarten equations can be expressed as [2]

$$
\begin{aligned}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \\
& \text { and } \\
& \bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V
\end{aligned}
$$

where X, Y are arbitrary tangent vectors and V the vector field normal to V^{n}. Also $h(X, Y)$ is second fundamental form and A_{V} the shape operator given by

$$
\begin{equation*}
g\left(A_{V} X, Y\right)=g(h(X, Y), V) \tag{1.6}
\end{equation*}
$$

Let us denote by P, Q the projection morphisms of $T\left(V^{n}\right)$ on D and D^{\perp} respectively. Then we can write

$$
\begin{equation*}
X=P X+Q X+\sum_{l=1}^{p} \eta^{l}(X) \xi_{l} \tag{1.7}
\end{equation*}
$$

for any vector field X tangent to V^{n}. We can also write

$$
\begin{equation*}
\phi V=B V+C V \tag{1.8}
\end{equation*}
$$

for V normal to V^{n}. We can also define maps $\psi: T\left(V^{n}\right) \rightarrow T\left(V^{n}\right)$ and $\omega: T\left(V^{n}\right) \rightarrow T\left(V^{n}\right)^{\perp}$ as follows
(i) $\psi X=\phi P X$
(ii) $\omega X=\phi Q X$

Thus in view of the equations (1.2), (1.7) and (1.9), it follows that

$$
\begin{equation*}
\phi X=\psi X+\omega X \tag{1.10}
\end{equation*}
$$

Here ψX denotes the tangential part and ωX the normal part of ϕX.
We can also write
Operating (1.10) by ϕ and making use of the equations (1.1), (1.8) and (1.10), we get

$$
a^{r} X+\sum_{l=1}^{p} \eta^{l}(X) \xi_{l}=\psi^{2} X+\omega \psi X+B \omega X+C \omega X
$$

Comparison of tangential and normal vectors to V^{n} gives

$$
\begin{align*}
& \text { (i) } \psi^{2}=a^{r} I_{n}+\sum_{l=1}^{p} \eta^{l} \otimes \xi_{l}-B \omega \tag{1.11}\\
& \text { (ii) } \omega \psi+C \omega=0
\end{align*}
$$

In a similar manner, premultiplying the equation (1.8) by ϕ and making use of (1.1), (1.8) and (1.10), we get
(i) $C^{2}=a^{r}-\omega B$
(ii) $\psi B+B C=0$

Hence we have

Theorem: Let M^{n+p} be an $(n+p)$-dimensional differentiable manifold admitting the general p-contact
Hsu structure and V^{n} be the semi-invariant manifold immersed differentiably in M^{n+p}. Then the structure induced on the submanifold is given by the equations (1.11) and (1.12).
2. Parallel Fields:

Let us now suppose that for the enveloping manifold M^{n+p}, the tensor field ϕ is parallel. Thus

$$
\left(\bar{\nabla}_{X} \phi\right) Y=0
$$

or

$$
\begin{equation*}
\bar{\nabla}_{X} \phi Y=\phi \bar{\nabla}_{X} Y \tag{2.1}
\end{equation*}
$$

In view of the equations (1.8) and (1.10), above equation takes the form

$$
\bar{\nabla}_{X}\{\psi Y+\omega Y\}=\phi\left\{\nabla_{X} Y+h(X, Y)\right\}
$$

or

$$
\begin{equation*}
\nabla_{X} \psi Y+h(X, \psi Y)-A_{\omega Y} X+\nabla_{X} \omega Y=\psi\left(\nabla_{X} Y\right)+\omega\left(\nabla_{X} Y\right)+B h(X, Y)+C h(X, Y) \tag{2.2}
\end{equation*}
$$

Comparison of tangential and normal fields in the above equation (2.2) yields
(i) $\quad\left(\nabla_{X} \psi\right) Y=A_{\omega Y} X+B h(X, Y)$
(ii) $\left(\nabla_{X} \omega\right) Y=C h(X, Y)-h(X, \psi Y)$

Further since ϕ is parallel on the enveloping manifold, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) V=0 \tag{2.4}
\end{equation*}
$$

Proceeding in a way similar to above and using (1.5), (1.6) and (1.8), we get
(i) $\left(\nabla_{X} B\right) V=A_{C V} X-\psi\left(A_{V} X\right)$
(ii) $\left(\nabla_{X} C\right) V+h(X, B V)+\omega A_{V} X=0$

3. Integrability Conditions:

In this section, we shall study integrability of distributions D and D^{\perp}. If $N_{\phi}(X, Y)$ and $N_{\psi}(X, Y)$ be the Nijenhuis tensors of ϕ and ψ respectively, we have in view of the equations (1.9), (1.10) and the definition of Nijenhuis tensor

$$
\begin{equation*}
N_{\phi}(X, Y)=N_{\psi}(X, Y)-\omega\{[\phi X, Y]+[X, \phi Y]-\psi[X, Y]\}+B \omega([X, Y])+C \omega([X, Y]) \tag{3.1}
\end{equation*}
$$ for all vector fields X, Y in D.

For all vector fields Z on the enveloping manifold, we denote by $t Z$ the tangential part of Z and $t^{\perp} Z$ by normal part of it. In view of the equation (3.1), we have
Theorem 3.1: The necessary and sufficient condition for the distribution D to be integrable is that
(i) $t N_{\phi}(X, Y)=N_{\psi}(X, Y)$
and
(ii) $t^{\perp} N_{\phi}(X, Y)=-\omega\{[\phi X, Y]+[X, \phi Y]-\psi[X, Y]\}$
for all X, Y in D.
Theorem 3.2: The necessary and sufficient condition for the distribution D to be integrable is that

$$
\begin{align*}
& \text { (i) } t^{\perp} N_{\phi}(X, Y)=0 \\
& \text { and } \tag{3.3}
\end{align*}
$$

(ii) $Q N_{\psi}(X, Y)=0$
for all X, Y in D.
Proof: If the distribution D is integrable, (3.3) (i) follows from (3.2)(ii). For the Nijenhuis tensor $N_{\psi}(X, Y)$, we have

$$
N_{\psi}(X, Y)=[\psi X, \psi Y]-\psi[\psi X, Y]-\psi[X, \psi Y]+\psi^{2}[X, Y]
$$

for all X, Y in D.

Ram Nivas and A nurag Agnihotri

Thus $N_{\psi}(X, Y) \in D$ and consequently $Q N_{\psi}(X, Y)=0$.
If $X, Y \in D^{\perp}$, we can show

$$
N_{\psi}(X, Y)=-P([X, Y]) .
$$

Thus we have
Theorem 3.3: The necessary and sufficient condition for the distribution D^{\perp} to be integrable is that

$$
N_{\psi}(X, Y)=0, \text { for all } X, Y \text { in } D^{\perp}
$$

References:

[1] Bejancu, A. (1981): On semi-invariant submanifolds of an almost contact metric manifold, Analele Stintifice ale Universitatii "Al I Cuza" din lasi, Vol. XXVII, pp. 17-21.
[2] Bejancu, A. (1985): Geometry of CR-submanifolds, D. Reidal Publishing Company, Tokyo, Japan.
[3] Mishra, R. S. (1984): Structures on a differentiable manifold and their applications, Chandrama Prakashan, 50-A, Balrampur House, Allahabad, India.
[4] Nivas, R. and Singh, R. (1988): Almost r-contact structure manifolds, Demonstratio Mathematica, Poland, Vol. 21, no. 3, pp. 1-7.
[5] Vanzura, J. (1972): Almost r-contact structure, Annali Delta Scuola Normale, Superiore, Di, Pisa, Senc III, Vol. 26, pp. 97-115.
[6] Yano, K. and Okumura, M. (1970): On (f, g, u, v, λ)-structure, Kodai Math. Sem. Rep., Vol. 22, pp. 401-423.

