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ABSTRACT 
 

The measure of entropy introduced by Shannon [12] is the key concept in the literature of 
information theory and has found tremendous applications in different disciplines of science and 
technology. The various researchers have generalized this entropy with different approaches. The 
object of the present manuscript is to develop a generalized measure of entropy by using the property 
of concavity. The proposed measure satisfies all essential and some desirable properties of the 
original Shannon’s [12] entropy. Moreover, we have developed a new generalized measure of cross 
entropy which corresponds to the newly introduced measure of entropy. 
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INTRODUCTION 
        In communication theory, it was Shannon [12] who first introduced the concept of entropy and it was then realized 
that entropy is a property of any stochastic system and the concept is now widely prevalent in different disciplines. The 
tendency of the system to become more disordered over time is described by the second law of thermodynamics, which 
states that the entropy of the system cannot spontaneously decrease. Today, information theory is still principally 
concerned with communications systems, but there are widespread applications in Mathematical Sciences. Shannon 
[12] called the probabilistic uncertainty as entropy and developed his measure given by  
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         Hu [7] proposed two new broad classes for measures of uncertainty as the survival exponential and the 
generalized survival exponential entropies and thus improving Shannon’s [12] entropy. Honda and Okazaki [6] 
generalized Shannon’s [12] entropy and proved that their entropy has applicability to the capacity on set systems. 

Immediately, after Shannon [12] gave his measure, Renyi [11] was the first to derive entropy of order  as follows: 
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      The generalized measure of entropy (1.2) includes Shannon’s [12] entropy as a limiting case as   1. Zyczkowski 
[14] explored the relationships between the Shannon’s [12] and Renyi’s [11] entropies of integer order. Havrada and 
Charvat [4] introduced non-additive entropy, given by:  
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     Many other probabilistic measures of entropy have been discussed and derived by  Brissaud [1], Chen [2], 
Garbaczewski [3], Herremoes [5], Lavenda [9], Nanda and  Paul [10], Sharma and Taneja [13] etc. The applications of 
the results on probabilistic information measures obtained by various authors have been provided to different fields of 
Linguistics, Biological Sciences, Economics, Social Sciences and Engineering Sciences for developing new entropic 
models. 
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        A measure  ;D P Q of divergence or cross entropy or directed divergence is found to be very important in various 

disciplines of Mathematical and Engineering Sciences. This measure is probabilistic in nature and measures the distance 
of a probability distribution P  fromQ . The most important and useful measure of divergence is due to Kullback and 

Leibler [8] and is given by 

1

( ; ) log
n

i
i

i i

p
D P Q p

q

                                       (1.4) 

          In this communication, we have introduced a new parametric generalized probabilistic measure of entropy and 
consequently, developed a new generalized measure of cross entropy. 

2. A NEW GENERALIZED PARAMETRIC MEASURE OF ENTROPY 
            In this section, we have proposed a new generalized measure of entropy for a probability 

distribution  1 2
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entropy measure of order   is given by the following mathematical expression:  
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Thus,  H P  can be taken as a generalization of well known Shannon’s [12] measure of entropy. 

Next, to prove that the measure (2.1) is a valid measure of entropy, we study its essential properties as follows: 

(i) Clearly   0H P    

(ii)  H P  is permutationally symmetric as it does not change if 1 2, ,..., np p p  are re-ordered among themselves. 

(iii)  H P  is a continuous function of ip  for all ip ’s. 

(iv) Concavity: To prove concavity property, we proceed as follows: 
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  for all 0  . 

Thus,  p  is a concave function ofp . Since the sum of concave functions is also a concave function,  H P  is a 

concave function of 1 2, ,..., np p p .Moreover, with the help of numerical data shown in the following Table-2.1, we 

have presented  H P as shown in Fig.-2.1. 

Table-2.1:  H P  against p  for 2n  and 2   

p   H P  

0 0 
0.1 0.271 
0.2 0.388 
0.3 0.454 
0.4 0.489 
0.5 0.5 
0.6 0.489 
0.7 0.454 
0.8 0.388 
0.9 0.271 
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The Fig.-2.1 clearly shows that the measure (2.1) is a concave function. 
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Fig.-2.1 

Hence, under the above conditions, the function H P is a correct measure of entropy. 

Next, we study some most desirable properties of  H P . 

(i) Expansibility:  1 2, ,..., ,0nH p p p   1 2, ,..., nH p p p  

That is, the entropy does not change by the inclusion of an impossible event. 

(ii) For degenerate distributions,   0H P  .  

This indicates that for certain outcomes, the uncertainty should be zero. 
(iii) Maximization: We use Lagrange’s method to maximize the entropy measure (2.1) subject to the natural constraint 
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Differentiating equation (2.2) with respect to1 2, ,..., np p p and equating the derivatives to zero, we 

get 1 2 ... np p p   . This further gives
1

ip i
n

  . Thus, we observe that the maximum value of H P  arises for 

the uniform distribution and this result is most desirable. 

(iv) The maximum value  n  of the entropy is given by 
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which shows that  n  is an increasing function of n, which is again a desirable result as the maximum value of an 

entropy should always increase. 
(v) Monotonicity: From equation (2.1), we have 
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Fig.-3.1 

Under the above conditions, the function  ;D P Q  is a correct measure of cross entropy. 
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