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Abstract

In this paper we study the existence of nontrivial solutions for the
singular Hamiltonian elliptic system

−∆u = g(v)
|x|a in Ω

−∆v = f(u)
|x|a in Ω

u = v = 0 on ∂Ω,

where Ω is a bounded domain in R2, a ∈ [0, 2) and the functions f
and g have critical exponential grouth at +∞. For the proof we use a
variational argument (a linking theorem).

keywords: Hamiltonian system, Variational method, Trudinger-
Moser inequality, strongly indefinite systems
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1 Introduction
Let Ω be a smooth bounded domain in R2 containing the origin. We consider
the following Hamiltonian system of singular elliptic equations

−∆u = g(v)
|x|a in Ω

−∆v = f(u)
|x|a in Ω

u = v = 0 on ∂Ω,

(1.1)

where a ∈ [0, 2), and the functions g and f satisfy the following:

H1) f, g : [0,+∞[→ [0,+∞[ are continuous functions with f = g =
0 on ]−∞, 0], and f (t) = ◦ (t), g (t) = ◦ (t) near the origin.

H2) There exist constants θ > 2 and t0 > 0 such that

0 < θF (t) ≤ tf (t) and 0 < θG (t) ≤ tg (t) ∀t ≥ t0,

where F (t) =
t∫

0

f (s) ds and G (t) =
t∫

0

g (s) ds.

H3) There exist M > 0 and R > 0 such that for all t ≥ R

0 < F (t) ≤Mf (t) and 0 < G (t) ≤Mg (t) .

H4) There exists β0 > 0 such that

lim
t→+∞

tf (t)

eβ0t2
>

(2− a)2

β0d2−a , and lim
t→+∞

tg (t)

eβ0t2
>

(2− a)2

β0d2−a ,

where d is the radius of the largest open ball centred at origin and contained
in Ω.

H5) ∀ε > 0 there exists positive constant Cε such that

f (t) ≤ Cεe
(β0+ε)t2 , g (t) ≤ Cεe

(β0+ε)t2 , ∀t ≥ 0.

Hypothesis H4) implies that f and g have critical growth at +∞.
We say that a function f has critical growth at +∞ if there exists β0 > 0,

such that
lim
t→+∞

f (t)

eβt2
=

{
0, for all β > β0

+∞, for all β < β0.
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This notion of criticality is motivated by Trudinger-Moser inequality (see
[13],[18]) which says that if u ∈ H1

0 (Ω) then eβu2 ∈ L1 (Ω). Moreover, there
exists a constant C > 0 such that

sup
‖u‖≤1

∫
Ω

eβu
2

dx ≤ C |Ω| , if β ≤ 4π.

Problems of the type (1.1) with nonlinearity having polynomial growth
have been studied in [4], [8] and [10] in the case a 6= 0, and by De Figuerido
and Felmer [5], Dai and Gu [3], and Hulshof et al. [11] in the case a = 0.

System (1.1) involving critical or subcritical exponential growth and with-
out weights (a = 0) have been investigated in [7], [9] and [15]. In [19], a
Schrodinger version of system (1.1) has been studied on the whole space
R2, where a compact Sobolev embedding was recovered by the presence of a
potential bounded away from 0 and whose the inverse is bounded in L1(R2).

Our work in this paper is closely related to the work in [17] where the
authors studied the Gradient system

i ∈ N, −∆ui =
∂F̃

∂ui
(x, u1, . . . , um) + hi(x) in Ω,

which is reduced to 
−∆u =

∂F̃

∂u
in Ω

−∆v =
∂F̃

∂v
in Ω

u = v = 0 on ∂Ω

(1.2)

if m = 2 and hi ≡ 0.
Note that our system (1.1) is considered as a Hamiltonian (not Gradient)

system since if we write

H(u, v) :=
F (u)

|x|a
+
G(v)

|x|a
,

then, system (1.1) takes the form
−∆u =

∂H

∂v
in Ω

−∆v =
∂H

∂u
in Ω

u = v = 0 on ∂Ω

(1.3)

3

On a singular class of strongly indefinite Hamiltonian...

97



showing the structural difference between our problem and the one studied in
[17]. Our work is then seen as an extension of [17] to the case of Hamiltonian
systems involving critical growth. It can also be considered as an extension
of the results in [7] for the critical case from a = 0 to a ∈ [0, 2) where the
limitation on a is due to Lemma 2.1.

Unlike [17], the strongly indefinte character of the functional associated
to (1.1) does not allow us to use classical Mountain Pass results and we shall
use linking methods instead, as in [7]. The presence of the singular term
|x|−a prevents us from using the classical Trudinger-Moser inequality, and an
adapted version of the Trudinger-Moser inequality with singular weight due
to Adimurthi-Sandeep [2] (see Lemma 2.1 in the next section) will be the key
tool to handle the singular nonlinearity.

We are interested in finding nontrivial solutions of (1.1) in the space
E := H1

0 (Ω)×H1
0 (Ω) endowed with the norm

‖(u, v)‖E :=
(
‖u‖2 + ‖v‖2

) 1
2
,

where ‖u‖ =

(∫
Ω

|∇u|2 dx
) 1

2

is the norm of the Sobolev space H1
0 (Ω) .

Note that f, g have maximal growth, which allows us to treat the problem
(1.1) variationaly in E. It is then natural to find the solutions of our problem
by looking for critical points of the corresponding functional

I (u, v) =

∫
Ω

∇u∇vdx−
∫

Ω

F (u)

|x|a
dx−

∫
Ω

G (u)

|x|a
dx,

in the space E := H1
0 (Ω)×H1

0 (Ω) . Under our assumptions, this functional
is well defined and C1 (E,R). Also, for all (ϕ, ψ) ∈ E, we have

I ′ (u, v) (ϕ, ψ) =

∫
Ω

∇u∇ψdx+

∫
Ω

∇v∇ϕdx−
∫

Ω

f (u)ϕ

|x|a
dx−

∫
Ω

g (v)ψ

|x|a
dx.

The main result in this paper is the following theorem

Theorem 1.1. If (H1) , (H2) , (H3) , (H4), and H5) are satisfied, then prob-
lem (1.1) has a nontrivial weak solution (u, v) ∈ E.
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2 preliminaries
In this paper, we shall use the following version of Trudinger-Moser inequality
with a singular weight due to Adimurthi-Sandeep [2].

Lemma 2.1. Let Ω be a bounded domain in R2 containing 0 and u ∈ H1
0 (Ω).

Then, for every α > 0 and a ∈ [0, 2)∫
Ω

eαu
2

|x|a
dx <∞.

Moreover,

sup
‖u‖≤1

∫
Ω

eαu
2

|x|a
dx <∞ (2.1)

if and only if α
4π

+ a
2
≤ 1.

To show that the Palais-Smale sequence is bounded in E, we will use the
following inequality proved in [7]:

Lemma 2.2. The following inequality holds

st ≤


(
et

2 − 1
)

+ s
(
log+ s

) 1
2 , for t ≥ 0 and s ≥ e

1
4(

et
2 − 1

)
+ 1

2
s2, for t ≥ 0 and s ≤ e

1
4

(2.2)

Lemma 2.3. Let u ∈ H1
0 (Ω) and a ∈ [0, 2). Then there exist C > 0 such

that ∫
Ω

|u|2

|x|a
dx ≤ C ‖u‖2 (2.3)

Proof. Using Hölder’s inequality, we have∫
Ω

|u|2

|x|a
dx ≤

(∫
Ω

|x|
−ar
r−2 dx

) r−2
r
(∫

Ω

|u|r dx.
) 2

r

.

We can choose r such that r > 4
2−a . Therefore,∫

Ω

|u|2

|x|a
dx ≤ C ‖u‖2

r .
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Finally, by the continuous embeddingH1
0 (Ω) ↪→ Lr (Ω) , we conclude that∫

Ω

|u|2

|x|a
dx ≤ C ‖u‖2 .

We will also use the following convergence result (Lemma 4.2 in [17]):

Lemma 2.4. Let Ω ⊂ R2 be a bounded domain and f : Ω × R → R be a
continuous function. Then, for any sequence (un) in L1 (Ω) such that

un → u in L1 (Ω) ,
f (x, un)

|x|a
∈ L1 (Ω) , and

∫
Ω

|f (x, un)un|
|x|a

dx ≤ C,

up to a subsequence we have

f (x, un)

|x|a
→ f (x, u)

|x|a
in L1 (Ω)

Lemma 2.5. Let (un, vn) be a Palais-Smale sequence for the fonctional I
such that (un, vn) ⇀ (u, v) weakly in E. Then (un, vn) has a subsequence,
still denoted by (un, vn) such that

F (un)

|x|a
→ F (u)

|x|a
in L1 (Ω) and

G (vn)

|x|a
→ G (v)

|x|a
in L1 (Ω) .

Proof. From (H3), we can conclude that

|F (un)| ≤M1 +M |f (un)| and |G (vn)| ≤M2 +M |g (vn)| (2.4)

where M1 = sup
[−R,R]

|F (un)|, and M2 = sup
[−R,R]

|G (vn)| .

On the other hand, from Lemma 2.4, we have

f (un)

|x|a
→ f (u)

|x|a
in L1 (Ω) , and

g (vn)

|x|a
→ g (v)

|x|a
in L1 (Ω) ,

which implies that there exist h1, h2 ∈ L1 (Ω) such that

|f (un)|
|x|a

≤ h1 and
|g (vn)|
|x|a

≤ h2 almost everywhere in Ω (2.5)
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Then, by (2.4), (2.5) and Lebesgue dominated convergence Theorem, we
get

F (un)

|x|a
→ F (u)

|x|a
in L1 (Ω) , and

G (vn)

|x|a
→ G (v)

|x|a
in L1 (Ω) .

Remark 2.6. C is a generic positive constant.

3 Linking structure and Plais-Smale sequences
Since the energy functional I has strong indefinite quadratic part, we cannot
use classical min-max methods. Instead, we use linking theory to give a
Palais-Smale sequence by the minimax principle used in [14]:

Definition 3.1. Let S be a closed subset of a Banach space X, and Q a
sub-manifold of X, with relative boundary ∂Q.
We say that S and ∂Q link if:

1. S ∩ ∂Q = ∅.

2. ∀h ∈ C0(X,X) such that h|∂Q = id, there holds h(Q) ∩ S 6= ∅.

Theorem 3.2. Let J : X −→ R be a C1 functional. Consider a closed subset
S ⊂ X, and a sub-manifold Q ⊂ X, with relative boundary ∂Q. Suppose:

1. S and ∂Q link.

2. ∃δ > 0 such that
J(z) ≥ δ ∀z ∈ S,
J(z) ≤ 0 ∀z ∈ ∂Q.

Let
Γ := {h ∈ C0(X,X) | h|∂Q = id},

and
c := inf

h∈Γ
sup
z∈Q

J(h(z)) ≥ δ.

Then, there exists a sequence (zk)k∈N ⊂ X, such that{
J(zk) −−−→

k→∞
c,

J ′(zk) −−−→
k→∞

0.
(3.1)

7

On a singular class of strongly indefinite Hamiltonian...

101



To verify that the functional I has a linking structure (i.e. satisfies (2) in
the previous Theorem), we use the following notations:

E+ =
{

(u, u) | u ∈ H1
0 (Ω)

}
and E− =

{
(u,−u) | u ∈ H1

0 (Ω)
}
,

S := {(u, u) ∈ E+ | ‖(u, u)‖ = ρ} = ∂Bρ ∩ E+,

and

Q :=
{
r (e, e) + ω : ω ∈ E−, ‖ω‖ ≤ R0 and 0 ≤ r ≤ R1

}
⊂ R(e, e)⊕ E−,

where e ∈ H1
0 (Ω) is a fixed nonnegative function with ‖e‖ = 1.

Lemma 3.3. There exist ρ > 0 and σ > 0 such that

I (z) ≥ σ, for all z ∈ S.

Proof. From (H1), for a given ε > 0 there exists t0 such that

f (t) ≤ 2εt and g (t) ≤ 2εt, for all t ≤ t0 (3.2)

In the other hand, it follows from H5) that for a given q > 2, there exists
a constant C > 0 and β such that

F (t) ≤ Ctqeβt
2

, and G (t) ≤ Ctqeβt
2

, for all t ≥ t0 (3.3)

From (3.2) and (3.3), we get

F (t) ≤ εt2 + Ctqeβt
2

and G (t) ≤ εt2 + Ctqeβt
2

, for all t ≥ 0 (3.4)

Now, for z ∈ S, we have

I (z) =

∫
Ω

|∇u|2 dx−
∫

Ω

F (u)

|x|a
dx−

∫
Ω

G (u)

|x|a
dx.

Using (3.4), (2.3), and Hölder inequality, we get

I (z) ≥ ‖u‖2 − 2ε

∫
Ω

u2

|x|a
dx− 2C

∫
Ω

uqeβu
2

|x|a
dx

≥ (1− Cε) ‖u‖2 − 2C

(∫
Ω

uqs
′
dx

) 1
s′
(∫

Ω

esβu
2

|x|as
dx

) 1
s

≥ (1− Cε) ‖u‖2 − 2C ‖u‖qqs′

∫
Ω

es‖u‖
2β( u

‖u‖)
2

|x|as
dx

 1
s

,
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where 1
s′

+ 1
s

= 1 with s sufficiently close to 1 such that as < 2 and qs′ > 1.
Now, for ‖u‖ ≤ δ, with δ > 0 such that βsδ2

4π
+ as

2
≤ 1, by Trudinger-Moser

inequality (2.1) and Sobolev imbedding Theorem we obtain

I (z) ≥ (1− Cε) ‖u‖2 − 2C ‖u‖q .

Then, for ε small enough we can find ρ, σ > 0 such that I (z) ≥ σ > 0 for
‖u‖ = ρ sufficiently small.

Lemma 3.4. There exist R0, R1 > 0 such that I (z) ≤ 0 for all z ∈ ∂Q,
where ∂Q denotes the boundary of Q in R (e, e)⊕ E−.
Proof. For z ∈ ∂Q, we have three cases:

Case 1: z ∈ ∂Q ∩ E−. We have z = (u,−u) and hence

I (z) = −
∫

Ω

|∇u|2 dx−
∫

Ω

F (u)

|x|a
dx−

∫
Ω

G (−u)

|x|a
dx ≤ −‖u‖2 ≤ 0.

Case 2: z = R1 (e, e) + (u,−u) ∈ ∂Q with ‖(u,−u)‖ ≤ R0. Then

I (z) = R2
1 −

∫
Ω

|∇u|2 dx−
∫

Ω

F (R1e+ u)

|x|a
dx−

∫
Ω

G (R1e− u)

|x|a
dx (3.5)

By the assumption (H2), there exists C > 0 such that

F (t) ≥ C
(
tθ − 1

)
, and G (t) ≥ C

(
tθ − 1

)
.

We then obtain from (3.5) that

I (z) ≤ R2
1 − C

∫
Ω

(R1e+ u)θ + (R1e− u)θ

|x|a
dx+ C.

Now, using the convexity of the function φ (t) = tθ, it follows that

I (z) ≤ R2
1 − 2CRθ

1

∫
Ω

eθ

|x|a
dx+ C.

Then, for R1 sufficiently large, we get I (z) ≤ 0.
Case 3: z = r (e, e) + (u,−u) ∈ ∂Q with ‖(u,−u)‖ = R0 and 0 ≤ r ≤ R1.

Then,

I (z) = r2 −
∫

Ω

|∇u|2 dx−
∫

Ω

F (re+ u)

|x|a
dx−

∫
Ω

G (re− u)

|x|a
dx

≤ R2
1 −

1

2
R2

0.

Thus, I (z) ≤ 0 if R0 ≥
√

2R1.

9
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To prove that a Palais-Smale sequence converges to a weak solution of
problem (1.1), we need to establish the following Lemma:

Lemma 3.5. Let (un, vn) ∈ E such that I (un, vn)→ c and I ′ (un, vn)→ 0.
Then,

‖un‖ ≤ C, ‖vn‖ ≤ C (3.6)∫
Ω

f (un)un
|x|a

dx ≤ C,

∫
Ω

g (vn) vn
|x|a

dx ≤ C (3.7)∫
Ω

F (un)

|x|a
dx ≤ C,

∫
Ω

G (vn)

|x|a
dx ≤ C (3.8)

Proof. Let (un, vn) ∈ E be a sequence such that I (un, vn)→ c and I ′ (un, vn)→
0, that is, ∫

Ω

∇un∇vndx−
∫

Ω

F (un)

|x|a
dx−

∫
Ω

G (vn)

|x|a
dx = c+ δn (3.9)

and for any (ϕ, ψ) ∈ E,∣∣∣∣∫
Ω

∇unψdx+

∫
Ω

∇ϕ∇vndx−
∫

Ω

f (un)ϕ

|x|a
dx−

∫
Ω

g (vn)ψ

|x|a
dx

∣∣∣∣ ≤ εn ‖(ϕ, ψ)‖ .

(3.10)
Choosing (ϕ, ψ) = (un, vn) in (3.10) and using (H2) , we have∫

Ω

f (un)un
|x|a

dx+

∫
Ω

g (vn) vn
|x|a

dx ≤ 2

∣∣∣∣∫
Ω

∇un∇vndx
∣∣∣∣+ εn ‖(un, vn)‖

≤ 2c+ 2

∫
Ω

F (un)

|x|a
dx+ 2

∫
Ω

G (vn)

|x|a
dx+ 2δn+

+ εn ‖(un, vn)‖

≤ 2c+
2

θ

∫
Ω

f (un)un
|x|a

dx+
2

θ

∫
Ω

g (vn) vn
|x|a

dx+ 2δn

+ εn ‖(un, vn)‖ .

Thus,∫
Ω

f (un)un
|x|a

dx+

∫
Ω

g (vn) vn
|x|a

dx ≤ C (1 + 2δn + εn ‖(un, vn)‖) (3.11)
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Now, taking (ϕ, ψ) = (vn, 0) and (ϕ, ψ) = (0, un) in (3.10), we get

‖vn‖2 − εn ‖vn‖ ≤
∫

Ω

f (un) vn
|x|a

dx (3.12)

and
‖un‖2 − εn ‖un‖ ≤

∫
Ω

g (vn)un
|x|a

dx (3.13)

Setting Vn =
vn
‖vn‖

and Un =
un
‖un‖

, we obtain

‖vn‖ ≤
∫

Ω

f (un)

|x|a
Vndx+ εn, and ‖un‖ ≤

∫
Ω

g (vn)

|x|a
Undx+ εn (3.14)

Using inequality (2.2) with t = Vn and s = f (un), in the first estimate
in (3.14), we obtain∫

Ω

f (un)

|x|a
Vndx ≤ C

∫
Ω

eV
2
n

|x|a
dx+

∫
{
x∈Ω: f(un)≥e

1
4

} f (un)

|x|a
[log (f (un))]

1
2 dx+

+
1

2

∫
{
x∈Ω: f(un)≤e

1
4

} [f (un)]2

|x|a
dx.

Using Trudinger-Moser inequality and the fact a < 2, we get∫
Ω

f (un)

|x|a
Vndx ≤ C

(
1 + β

1
2

∫
Ω

f (un)un
|x|a

dx

)
.

This estimate together with the first inequality in (3.14) imply that

‖vn‖ ≤ C

(
1 +

∫
Ω

f (un)un
|x|a

dx+ εn

)
(3.15)

Similary, we get from the second estimate in (3.14)

‖un‖ ≤ C

(
1 +

∫
Ω

g (vn) vn
|x|a

dx+ εn

)
(3.16)

Adding the estimates (3.15) and (3.16) and using (3.11), we obtain

‖(un, vn)‖ ≤ C (1 + δn + εn ‖(un, vn)‖+ εn)

Then, ‖(un, vn)‖ ≤ C. From this estimate, inequality (3.11) and (H2) , we
obtain the estimates (3.7) and (3.8), which completes the proof.

11
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4 Proof of the main result

4.1 Finite-dimensional approximation

Since dimE± = ∞, the functional I is strongly indefinite and all of its
critical points have infinite Morse index. Thus, the standard linking theorems
can not be applied. We therefore approximate problem (1.1) by a sequence
of finite dimensional spaces (Galerkin approximation).

Denote by (φi)i∈N an orthonormal set of eigenfunctions corresponding to
the eigenvalues (λi) , i ∈ N, of (−∆, H1

0 (Ω)) and set

E+
n = span {(φi, φi) | i = 1, ..., n}

E−n = span {(φi,−φi) | i = 1, ..., n}
En = E+

n ⊕ E−n

Set now Qn := Q ∩ En ⊂ R(e, e) ⊕ E−n , where Q as in previous section,
and define the class of mappings

Γn = {γ ∈ C (Qn,R (e, e)⊕ En) : γ (z) = z on ∂Qn}

and set
cn,e = inf

γ∈Γn
max
z∈Qn

I (γ (z)) (4.1)

Using an intersection Theorem (Proposition 5.9 in [14]), we have

γ (Qn) ∩ S 6= �, ∀ γ ∈ Γn,

which, in combination with Lemma 3.3, imply that

cn,e ≥ σ > 0.

On the other hand, since the identity mapping Id : Qn → R (e, e) ⊕ En
belongs to Γn, it is easy to prove that cn,e ≤ R2

1. Then, we have

0 < σ ≤ cn,e ≤ R2
1

Now, by Lemma 3.3 and Lemma 3.4, we see that the linking geometry
holds for the functional In = I|En . Therefore, applying the linking Theorem
for In (see theorem 5.3 in [14]), we get the following result:
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For each n ∈ N the functional In has a critical point zn = (un, vn) ∈ En
at level cn such that

In (zn) = cn,e ∈
[
σ,R2

1

]
(4.2)

and
I ′n (zn) = 0.

Furthermore, ‖zn‖ ≤ C where C does not depend in n.

4.2 On the mini-max level

In order to get a more precise information about the minimax level, we
consider for k ∈ N, the sequence

ψ̃k(x) :=
1√
2π


(log k)1/2 for 0 ≤ |x| ≤ 1

k

log 1
|x|

(log k)1/2
for 1

k
≤ |x| ≤ 1

0 for |x| ≥ 1

and by setting ek(x) = ψ̃k(
x
d
), we define the sets

Qn,k =
{
r (ek, ek) + ω : ω ∈ E−n , ‖ω‖ ≤ R0 and 0 ≤ r ≤ R1

}
,

Lemma 4.1. There exists k ∈ N such that

sup
R+(ek,ek)⊕E−

I <
2π (2− a)

β0

.

Proof. Suppose by contradiction that for all k ∈ N, we have

sup
R+(ek,ek)⊕E−

I ≥ 2π (2− a)

β0

.

This means that there exists zn,k = τn,k (ek, ek)+(un,k,−un,k) ∈ Qn,k such
that

I (zn,k) ≥
2π (2− a)

β0

− εn,

where εn → 0 as n→∞.
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Let h (t) := I (tzn,k). We see that h (0) = 0 and lim
t→+∞

h (t) = −∞. Then,

there exixts a maximum point t0zn,k with I (t0zn,k) ≥ 2π(2−a)
β0

− εn. We may
assume that zn,k is this point, and then we get

τ 2
n,k−

∫
Ω

|∇un,k|2 dx−
∫

Ω

F (τn,kek + un,k)

|x|a
dx−

∫
Ω

G (τn,kek − un,k)
|x|a

dx ≥ 2π (2− a)

β0

−εn
(4.2)

and

τ 2
n,k−

∫
Ω

|∇un,k|2 dx =

∫
Ω

f (τn,kek + un,k) (τn,kek + un,k)− g (τn,kek − un,k) (τn,kek − un,k)
|x|a

dx

(4.3)
Now, put τ 2

n,k = sn + 2π(2−a)
β0

. So, from (4.2) we get sn + 2π(2−a)
β0

≥
2π(2−a)

β0
− εn.

By assumption (H4) , there exists t > 0 and

η0 >
(2− a)2

β0d2−a (4.5)

such that

tf (t) ≥ (η0 − ε) eβ0t2 , and tg (t) ≥ (η0 − ε) eβ0t2 , (4.6)

for all t ≥ t and ε is arbitrarly small.

Next, choosing k sufficiently large such that τn,k
√

(log k)
2π
≥ t, we get

max {τn,kek + un,k, τn,kek − un,k} ≥ t for all x ∈ B d
k

(0) .

Now, using (4.3) and (4.6), we obtain

sn +
2π (2− a)

β0

≥ (η0 − ε)
∫
B d
k

(0)

eβ0τ2
n,k

(log k)
2π

|x|a
dx

≥ (η0 − ε) 2πe
β0

(
sn+

2π(2−a)
β0

)
(log k)

2π

∫ d
k

0

ξ1−adξ

≥ (η0 − ε) 2πeβ0sn
(log k)

2π e(2−a)(log k)

(
d

k

)2−a

≥ (η0 − ε)
2πd2−aeβ0sn

(log k)
2π

2− a
.
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This and (4.2) imply that lim
n→+∞

sn = 0. So, we see that (η0 − ε) ≤

2 (2− a)2

β0d2−a , which contradicts (4.5).

4.3 Proof of Theorem 1

Lemma 4.1 implies that there is δ > 0 suh that

cn := cn,e ≤
2π (2− a)

β0

− δ

where cn,e is defined by (4.1).
Next, using (4.2) and Lemma 3.5, we have zn = (un, vn) ∈ En bounded

in E such that

In (zn) = cn ∈
[
σ,

2π (2− a)

β0

− δ
]
, (4.7)

I ′n (zn) = 0, (4.8)
(un, vn) ⇀ (u, v) in E,

un → u and vn → v in Lq (Ω) , ∀ q ≥ 1,

un (x)→ u (x) and vn (x)→ v a. e. in Ω

By Lemma 3.5, we have∫
Ω

f (un)un
|x|a

dx ≤ C,

∫
Ω

g (vn) vn
|x|a

dx ≤ C (4.4)

∫
Ω

F (un)

|x|a
dx ≤ C,

∫
Ω

G (vn)

|x|a
dx ≤ C (4.5)

Taking as test functions (0, ψ) and (ϕ, 0) in (4.8), where ϕ and ψ are
arbitrary functions in Fn := span {φi : i = 1, ...., n}, we get∫

Ω

∇un∇ψdx =

∫
Ω

g (vn)ψ

|x|a
dx ∀ψ ∈ Fn (4.6)∫

Ω

∇vn∇ϕdx =

∫
Ω

f (un)ϕ

|x|a
dx ∀ϕ ∈ Fn (4.7)
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Consequently, by Lemma 3.5 and 2.4, f(un)
|x|a →

f(u)
|x|a and g(vn)

|x|a →
g(v)
|x|a in

L1 (Ω). Passing to the limit in (4.6) and (4.7) and using the fact that ∪
n∈N

Fn

is dense in H1
0 (Ω), we see that∫

Ω

∇u∇ψdx =

∫
Ω

g (v)ψ

|x|a
dx ∀ψ ∈ H1

0 (Ω) (4.8)∫
Ω

∇v∇ϕdx =

∫
Ω

f (u)ϕ

|x|a
dx ∀ϕ ∈ H1

0 (Ω) (4.9)

Thus, we conclude that (u, v) is a weak solution of (1.1).
Finally, it only remains to prove that (u, v) ∈ E is nontrivial. Assume by

contradiction that u = 0, which implies that also v = 0. Now, if ‖un‖ → 0,
then we get directly (4.15) below, and then a contraduction. Thus, asume
that ‖un‖ ≥ b > 0, ∀n and consider

‖un‖2 =

∫
Ω

g (vn)un
|x|a

dx (4.10)

Setting un =
(

2π(2−a)
β0

− δ
) 1

2 un
‖un‖ , and using inequality (2.2) with s = g(vn)√

β0

and t =
√
β0un, we have

(
2π (2− a)

β0

− δ
) 1

2

‖un‖ =

∫
Ω

g (vn)un
|x|a

dx

≤
∫

Ω

eβ0u2
n − 1

|x|a
dx+

∫
{
x∈Ω:

g(vn(x))√
β0
≤e

1
4

} (g (vn))2

β0 |x|a
dx

+

∫
{
x∈Ω:

g(vn(x))√
β0
≥e

1
4

} g (vn)√
β0 |x|a

(
log

(
g (vn)√
β0

)) 1
2

dx

(4.11)

Since ‖un‖2 = 2π(2−a)
β0
− δ, it is clear that the function m (un) := eβ0u2

n − 1
satisfies the conditions of Lemma 2.4 , so the first term tends to zero. By
Lebesgues dominated convergence, we can see also that the second term tends
to zero.
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From H5) and Lemma 2.4, we can estimate the third term by∫
Ω

g (vn)√
β0 |x|a

(
log

(
g (vn)√
β0

))2

dx ≤
∫

Ω

g (vn)√
β0 |x|a

(
log

(
Cεe

(β0+ε)v2n

√
β0

)) 1
2

dx

≤
∫

Ω

g (vn)√
β0 |x|a

(
log

(
Cε√
β0

) 1
2

+ (β0 + ε)
1
2 vn

)
dx

≤ o (1) +

(
1 +

ε

β0

) 1
2
∫

Ω

g (vn) vn
|x|a

,

and hence, by (4.11), we get(
2π (2− a)

β0

− δ
) 1

2

‖un‖ ≤ o (1) +

(
1 +

ε

β0

) 1
2
∫

Ω

g (vn) vn
|x|a

dx (4.12)

Similarly, with ‖vn‖2 ≤
∫

Ω
f(un)vn
|x|a dx, we get(

2π (2− a)

β0

− δ
) 1

2

‖vn‖ ≤ o (1) +

(
1 +

ε

β0

) 1
2
∫

Ω

f (un)un
|x|a

dx (4.13)

On the other hand, by Lemma 2.5 and (4.7), we can conclude that∫
Ω

F (un)

|x|a
dx→ 0,

∫
Ω

G (vn)

|x|a
dx→ 0 (4.14)

and ∣∣∣∣∫
Ω

∇un∇vndx
∣∣∣∣ ≤ o (1) +

2π (2− a)

β0

− δ,

which, together with (4.8), imply that∫
Ω

f (un)un
|x|a

dx+

∫
Ω

g (vn) vn
|x|a

dx ≤ o (1) + 2

(
2π (2− a)

β0

− δ
)

So, from (4.12) and (4.13) we obtain

‖un‖+ ‖vn‖ ≤ o (1) + 2

(
1 +

ε

β0

) 1
2
(

2π (2− a)

β0

− δ
) 1

2

≤ 2

(
2π (2− a)

β0

− δ
) 1

2

,
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for ε sufficiently small and n sufficiently large. It follows that there is a
subsequence of (un) or (vn) (without loss of generality assume it is (vn)) such
that

‖vn‖ ≤
(

2π (2− a)

β0

− δ
) 1

2

.

Thus, using H5), Lemma 2.1, and Hölder inequality with q > 1 such that

q

(
(β0+ε)

(
2π(2−a)
β0

−δ
)

4π
+ a

2

)
≤ 1, we get

∣∣∣∣∫
Ω

g (vn) vn
|x|a

dx

∣∣∣∣ ≤ Cε ‖vn‖Lq′ (Ω)

∫
Ω

eq(β0+ε)v2n

|x|qa
dx

≤ C ‖vn‖Lq′ (Ω) .

Since ‖vn‖Lq′ (Ω) → 0, we get∫
Ω

g (vn) vn
|x|a

dx→ 0.

Hence, ∫
Ω

∇un∇vndx→ 0 (4.15)

which, together with (4.14), imply that cn → 0, yielding a contradiction.
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