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ABSTRACT 
 Usually in the literature of information theoretic measures, entropies are expressed as the 
weighted arithmetic mean of their generating functions, the findings of which are sometimes 
pseudo-additive entropies. In the present communication, we have expressed the generalized 
existing entropies in terms of mean values and determined the parametric mean codeword 
lengths using the additivity condition. Power mean and geometric mean have been determined 
using the concept of multiplicativity of means and it is shown that that multiplicative means 
serves as a lower and upper bound to the newly introduced additive mean codeword length. 
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INTRODUCTION  
      The concept of information entropy introduced by well known mathematician Shannon [14] gave birth to 
many entropies making the literature on information theory voluminous. These entropies are famous as 
parametric, trigonometric and weighted entropies. The entropy measure introduced by Shannon [14] is given by 
the following mathematical expression: 
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A systematic attempt to develop a generalization of Shannon's [14] entropy was carried out by Renyi [13], who 
characterized an entropy of order   given by 
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Based upon Renyi’s [13] motivations, Aczel and Daroczy [2], Kapur [7] generalized the entropy of order   by 
changing some of its postulates. The generalization provided by Aczel and Daroczy [2], known as entropy of 

order   is given by 
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whereas Kapur [7] introduced entropy of order   and type   given by 

                       0,1,0,log
1

1
,...,,

1

1

1

21, 



























 





n

k
n

k
k

k
nn

p

p
pppH                       (1.4) 

        It is well known that Kraft’s [8] inequality play an important role in proving noiseless coding theorems. 
Nagaraja [10] remarked that Kraft–McMillan inequality is a basic result in information theory which gives a 
necessary and sufficient condition for a code to be uniquely decodable and also has a quantum analogue. The 
author proved this inequality and its converse for prefix-free codes. Ludwig [9] remarked that Kraft’s inequality 
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is a classical theorem in Information Theory which establishes the existence of prefix codes and proved a 
generalization of this inequality which states that for every admissible infinite length distribution, one can 
construct a maximal prefix codes whose codewords satisfy this length distribution. Some other findings related 
with the construction of codeword lengths have been given by Baer [3], Ramamoorthy [12], Dar, R. A. and 
Baig, M. A. K. [5]  etc. 
        The axiomatic characterizations of various entropies have little apparent connection with the mean code-
word lengths. In this paper, we have defined generalized entropy in such a way that connects entropy directly 
with the mean code-word lengths. In the next section, we have characterized the existing measures of entropy 
introduced by Aczel and Daroczy [2] and Kapur [7] by applying functional equations. 

2. DEVELOPMENT OF GENERALIZED ENTROPIES VIA FUNCTIONAL EQUATIONS 

We define a parametric class, denoted by *F  as follows: 

1.  A function :]0,1] R   belongs to the class *F  if   is strictly monotonic and the function 

* :[0,1] R   defined by 
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is continuous on [0,1]. 

2.  Let *F .  Generalized mean value is defined by 
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*  is defined by (2.1) 

3. Let *F  as defined in def 1and let  nM  be as defined in definition 2. Then 
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are called generalized  entropies. This definition is however, too wide to yield an entropy concept useful for 

applications. Thus, we impose two restrictions, first with the aid of class *F  defined in definition 1 and second 

as the condition of additivity, that is, generalized  entropies should be additive. We observe that the additive 

property of generalized entropies, is translated, according to (2.3) into the multiplicative property of 

generalized mean.  
Concept of equality of generalized mean  

The two functions *, F , the  generalized mean and the  generalized mean are equal,  

that is,                              
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iff   and   are affine maps of each other.  

Theorem 2.1: Let *, F , then (2.4) is satisfied iff   constants 0A  and B  such that 

                                                1,0 pBpAp                                            (2.5) 

Proof: One sees immediately that (2.4) is satisfied if (2.5) is satisfied. We have to show that (2.5) implies 

(2.4).Define the continuous function h  by  

                                                          1,01   xxxh                                                   (2.6) 
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Then (2.4) gives     
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Then, there exist constantsAand B  such that   BAxxh   for all   1,0x  (refer Aczel [1]).  

By comparing this equation with (2.6), we have 

                                                           1,0 pBpAp   

The strict monotonicity of   implies 0A  and this concludes the proof of the theorem. 

Theorem 2.2: Let *F , then the generalized entropy nI  is additive iff 

                                                             tt log                                                                        (2.7)                                                   

or                                                         1  tt                                                                          (2.8) 

for all  1,0t  hold, upto an additive and non-zero multiplicative constant  . This means that among the 

generalized entropies, the only entropies additive in nature are given by  

                                      1 2
1

1

log
, ,..., , 0

n
k k

n n n
k

k
k

p p
H p p p

p











  


                                   (2.9) 

and                           
1

, 1 2
1

1

1
, ,..., log , 0

1

n
k

n n n
k

k
k

p
H p p p

p

 

 





 





 
 

    
 

                                (2.10) 

where (2.9) and (2.10) are respectively Aczel and Darcozy [2] and Kapur’s [6] entropy. 

Proof: The “only if” part is easily checked. As to the “if” statement, let *F  and the 

generalized  entropy nI  be additive. Then, the respective  generalized mean is multiplicative, that is, 
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Again, we will suppose this only for non-zero probabilities, that is,  
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(2.12)                                        
If (2.12) is satisfied, then, by (2.1), (2.11) also holds. 

Now, put  mj
m

q j ,...,2,1
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  into (2.12), we get 
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If, for a fixed m, we denote                         







m

x
x :                                                         (2.14) 

then (2.13) becomes (2.4) and *F , and *F . So, by Theorem (2.1), we have 
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                                                             1,0 xBxAx                                           (2.15) 

for a fixed m . If m  goes through the positive integers, the constants A  andB can be different for different 
m  and so (2.15) really means 

                                                    ,...2,1,1,0 





 mxmBxmA

m

x                      (2.16) 

Our task is to find all functions , defined, continuous and strictly monotonic on  1,0  which satisfy (2.16). 

With 
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(2.16) becomes                                              mBtfmAtmf )(                                        (2.18) 

By (2.17),   Rf ,1:  is continuous and strictly monotonic and it is known that the general solution of 

(2.18) is given by  

  btctf  log  or   battf c  ,    ,1t  , bca ,0,0   are constants (refer Aczel [1]) 

Taking (2.17) into consideration in both cases, we have 

   0log  cbxcx  and     0,0   cabaxx c     for all  1,0x , respectively, 

or, with other notations for the constants,     

                                                            0log  abxax                                               (2.19)                                              

and                                                   1,01     abaxx                                        (2.20) 

However, by supposition, *F  and so (2.1) has to hold. 
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Hence, we have to have 0  . So, (2.19) and (2.20) show that (2.7) and (2.8), with arbitrary 0, 1   , 

are indeed, upto an additive and a non-zero multiplicative constant, the most general solutions in *F . If we put 

these   into the definition of the generalized   entropies, we get Aczel and Darcozy [2] and Kapur’s [6] 

entropy, respectively. 
In next sections, we have characterized generalized parametric mean codeword lengths through additive and 
multiplicative conditions and consequently, developed some desirable inequalities. 

3. DETERMINATION OF MEAN CODEWORD LENGTHS AND THEIR RELATED INEQUALITIES 

Let
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, 0  be a set of complete probability distribution. Suppose that we 

wish to represent the events in X  by finite sequences of elements of the set  1,...,1,0 D  where 1D . 

There is a uniquely decipherable code which represents ix  by a sequence of in  elements if and only if the 

integers in  satisfy the Kraft’s [8] inequality 
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Let   R,1:  be continuous and strictly monotonic function known as “cost function” associated with 

the length so that the “cost” of using a sequence of length n  is )(n . Then, the average cost of encoding X  

by a distribution of lengths  mnnnN ,...,, 21  is given by 
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Since   is continuous and strictly monotonic function on ,1 , therefore   has an inverse 1  . We can now 

define a mean length for the cost function   by  
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The reason for calling L a mean length is that when nnnn m  ...21 , then nL  . 

Moreover, if     ,0 xxx   then  
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a mean codeword length developed by Parkash and Priyanka [11]. Also, if   1,0   xx , then 
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which is an ordinary mean length.  

Kapur [7] has also introduced the 2-parameter exponentiated mean codeword length of ordert , 0t and 

type  for which     tx
t Dxx  ,   ,1x  given by 
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Also, if     tx
t Dxx  , 1  then (3.5) becomes 
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which is a exponential mean codeword length introduced by Campbell [4]. 
Important inequalities have been developed by Shannon [14] and Campbell [4] for the mean codeword lengths 
(3.4) and (3.6). These give essentially Shannon [14] and Renyi [13] entropies as lower bounds of (3.4) and (3.6). 
Next, we determine the generalized mean codeword lengths: 
3.1 Determination of generalized additive mean codeword lengths 

Here we will show that how the natural additivity condition characterizes the mean codeword lengths (3.3) and 

(3.5). Consider two independent set of events  mxxxX ,...,, 21  and  ryyyY ,...,, 21  with the 
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probability distributions 1 2
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D symbols, and let  AXS ,  and  AYS ,  be uniquely decipherable codes with the sequences 

 mnnnN ,...,, 21  and  rmmmM ,...,, 21  of lengths of code words. Then by Kraft’s [8] inequality, we 

have 1
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code  AYXS ,  for which the family of the lengths of code words is 

exactly  rjmimnMN ji ,...,2,1;,...,2,1:  . 

Then, if L  is to be a measure of mean length, it is natural to require that 
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This is known as the additivity condition. 
Theorem 3.1 The new mean codeword length (3.3) and (3.5) are the only generalized mean codeword lengths 

which are additive with 2m r  . 

Proof: For 2m r  , (3.7) can be written as        
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1 2 1 21 ( ) ( ) 1 ( ) ( )p n a p n a p n p n a                               (3.9) 

for all ]1,0[p , ann ,, 21  positive integers 

But it is known that the only strictly monotonic increasing solutions of (3.9) are 0( ) , 0x x b      and  

( ) , 0, 0tx
t x D b t       (refer Aczel and Daroczy [2]). 



GENERALIZED ENTROPIES VIA FUNCTIONAL EQUATIONS AND DETERMINING… 

103 
 

When 0( )x x b   , then 1 1
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which is (3.5).This completes the proof.                               

For 0, 1b   , we have ( ) tx
t x D   which is a convex function for 0t  . 

Using the convexity of t and monotonicity of 1
t  , we have  
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For 1 , (3.10) gives
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4. MULTIPLICATIVE CHARACTERIZATION OF MEANS AND THEIR RELATION TO MEAN 
CODEWORD LENGTH  

In the section-2, we have defined the generalized mean and their corresponding  - entropies. We observe that 

the additive property of  - entropies is translated according to (2.3) into multiplicative property of generalized 

mean. Using this concept in the context of coding theory, we shall characterize the means which are 

multiplicative in nature. Here, we extend the domain of function   from  1,0  to ,1 . 
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, 0  be the set of 

complete probability distributions associated with the independent set of events  mxxxX ,...,, 21  and 

 ryyyy ,...,, 21  respectively. Since X  and Y  are independent, the probability of the pair  ji yx ,  
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. Let ix  and jy  be represented by sequences of lengths in , mi ,..,2,1  and 

jm , rj ,..,2,1  respectively. Using multiplicative law, we have 
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But it is known that the only strictly monotonic increasing solutions of (4.1) are 0( ) logx x     and 

1( ) , 0, 0, 0cx x x c         (refer Aczel [1]) 

Taking 0( ) logx x    , we have   0 11
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which is geometric mean codeword length. 

Next taking, 1( ) cx x    , we have  1
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which is a power mean of order c . Next, we consider the following cases: 

Case-I: When 0, 1   , we have 0( ) log ,x x x N    which is concave function ofx . 

Using the concavity of 0 and monotonicity of 1
0
 , we have  
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Case-II: When 0, 1   , we have 1( ) cx x   which is a convex function of x . 

Using the convexity of 1 and monotonicity of 1
1
 , we have 
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So, from (4.2) and (4.3), we have  
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which shows that the additive mean codeword length is bounded above and below by multiplicative mean 

codeword lengths. In particular, for 1 , (4.4) gives                                   
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which shows that arithmetic mean codeword length is bounded above and below by power mean and geometric 
mean, respectively. 
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