
On a critical and subcritical system of
subelliptic equations on unbouded domain of

Heisenberg group

Nasreddine Megrez
Department of Mathematics, Prince Sultan University

P.O. Box 66833 , Riyadh, 11586, Saudi Arabia.
email: nmegrez@psu.edu.sa, nmegrez@gmail.com

January 3, 2014

Abstract

We give two existence results for the problem

(P ) :



−∆Hnu = q|v|q−2v in Ω

−∆Hnv = p|u|p−2u in Ω

lim
|ξ|−→∞

u(ξ) = 0

lim
|ξ|−→∞

v(ξ) = 0

u|∂Ω = v|∂Ω = 0 (if Ω 6= Hn)

where ∆Hn is the Heisenberg Laplacian and Hn is the Heisenberg group.
The first existence result is established when Ω is a strongly asymptoticaly
contractive domain, and p, q ≤ 2n+1

n−1
are superlinear-subcritical, that is

1 >
1

p
+

1

q
>

n

n+ 1
. The second existence result is established when

Ω = Hn, and (p, q) is critical, that is
1

p
+

1

q
=

n

n+ 1
.
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1 Introduction and main result

We denote by Hn the vector space R2n+1, of vectors ξ := (x1, ..., xn, y1, ..., yn, t):= (x, y, t),
endowed with the group action:

ξ ◦ ξ0 = (x+ x0, y + y0, t+ t0 + 2
n∑
i=1

(xiy0i − yix0i)).

Hn is a Lie group, called the Heisenberg group, and the corresponding Lie
algebra of left invariant vector fields, is generated by:

Xi =
∂

∂xi
+ 2yi

∂

∂t
, i = 1, ..., n,

Yi =
∂

∂yi
− 2xi

∂

∂t
, i = 1, ..., n,

T =
∂

∂t
.

We have [Xi, Yj ] = −4Tδi,j , [Xj , Xk] = [Yj , Yk] = [Xj , T ] = [Yj , T ] = 0.
The Heisenberg Laplacian, (also called the subelliptic Laplacian, or the Kohn
Laplacian), is defined as:

∆Hn :=
n∑
i=1

(X2
i + Y 2

i )

=
n∑
i=1

∂2

∂xi2
+

∂2

∂yi2
+ 4yi

∂2

∂xi∂t
− 4xi

∂2

∂yi∂t
+ 4(x2

i + y2
i )
∂2

∂t2

= div(A∇u)

where A is the following (2n+ 1)× (2n+ 1) matrix: In 0 2yt

0 In −2xt

2y −2x 4(x2 + y2)


Observe that A is a positive semi definite matrix, with det(A) ≡ 0 for all
(x, y, t) ∈ Hn, and rank(A) = 2n.
A natural group of dilations on Hn, is given by:

δλ(ξ) := (λx, λy, λ2t), λ > 0.

The Jacobian determinant of δλ is λN , where N = 2n + 2 is the homogeneous
dimension of Hn.
N∗ :=

2N
N − 2

, is the critical Sobolev exponent for ∆Hn .

Let Ω be an open set of Hn. We denote by
◦
S2

1 (Ω) the Folland-Stein Sobolev
space, defined as the closure of C∞0 (Ω), under the norm:

‖u‖2S2
1(Ω) :=

∫
Ω

|∇Hnu|2dξ.
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Note that
◦
S2

1 (Hn) = S2
1(Hn).

Definition 1.1. A domain Ω ⊂ Hn is said to be strongly asymptotically con-
tractive (S.A.C for simplicity), if Ω 6= Hn and for any sequence ηj ∈ Hn such
that |ηj | −→ ∞, there exists a subsequence ηjl such that either

i)

∣∣∣∣∣
∞⋃
n=1

∞⋂
l=n

(ηjl ◦ Ω)

∣∣∣∣∣ = 0,

or

ii) ∃η0 ∈ Hn such that for any R > 0 there exist an open set MR ⊂⊂ η0 ◦ Ω, a
closed set Z of measure zero and an integer lR > 0 such that

(ηjl ◦ Ω) ∩BR(0) ⊂MR ∪ Z, for any l ≥ lR.

Let Ω ⊆ Hn be unbounded, and p, q two positives real.

In this paper, we give two existence results for the problem

(P ) :



−∆Hnu = q|v|q−2v in Ω
−∆Hnv = p|u|p−2u in Ω

lim
|ξ|−→∞

u(ξ) = 0

lim
|ξ|−→∞

v(ξ) = 0

u|∂Ω = v|∂Ω = 0 (if Ω 6= Hn)

according to the following cases:

Case I: Ω is strongly asymptoticaly contractive domain, and p, q ≤ 2N
N − 4

,
and are superlinear-subcritical, that is

1 >
1
p

+
1
q
>
N − 2
N

=
n

n+ 1
(1.1)

Case II: Ω = Hn, and (p, q) is critical, that is

1
p

+
1
q

=
N − 2
N

=
n

n+ 1
(1.2)

Let H be the Banach space
(
S2

1(Hn) ∩ Lp(Hn)
)
×
(
S2

1(Hn) ∩ Lq(Hn)
)
, equipped

with the norm:
‖(u, v)‖H = ‖u‖S2

1(Hn) + ‖v‖S2
1(Hn).

A weak solution of the problem (P ) is a critical point of the functional J defined
by:
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J(u, v) :=
∫

Ω

∇Hnu.∇Hnvdξ −
∫

Ω

[|u|p + |v|q] dξ (1.3)

where ∇Hn := (X1, ..., Xn, Y1, ..., Yn)

The quadratic part of J is well defined on
◦
S2

1 (Ω)×
◦
S2

1 (Ω), and the second part

is well defined if p, q ≤ N + 2
N − 2

. However, for subcritical (p, q) ( (1.1) ), at less

one of the variables p, q is greater then N+2
N−2 . For this matter, we will use in

case I, fractional Sobolev spaces

Es,t = D
(
(−∆Hn)

s
2
)
×D

(
(−∆Hn)

t
2

)
, s, t > 0, s+ t = 2,

allowing us to take p > N+2
N−2 , if q <

N+2
N−2 , and to use some compact sobolev

embedings. In case II, J is well defined and of class C1 on H, and in vertue of
abstract concentration compactness we dont need compact embedings.

Our main results are:

Theorem 1.2. In the case I, the problem (P ) has a weak solution in Es,t

Theorem 1.3. In the case II, the problem (P ) has a weak solution in H.

2 Functional analytic frame work

In this section, we expose an abstract analytic frame work.

2.1 Spectral families

For completion, we recall results on spectral families (see [7]). Let H be a
Hilbert space endowed with a scalar product < ., . > and its associated norm
‖.‖. Suppose there is a nondecreasing family {M(λ), λ ∈ R} of closed subspaces

of H, such that
⋂
λ∈R

M(λ) = {0}, and
⋃
λ∈R

M(λ) = H.

For any fixed λ, we have

M(λ− 0) :=
⋃
λ′<λ

M(λ′) ⊂M(λ) ⊂M(λ+ 0) :=
⋂
λ′>λ

M(λ′)

Definition 2.1. We say that the family {M(λ)} is right continuous at λ if
M(λ+ 0) = M(λ), left continuous if M(λ− 0) = M(λ), and continuous if it is
both right and left continuous.

Definition 2.2. The family {E(λ)} of orthogonal projections onM(λ), is called
spectral family, and we have:
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i) {E(λ)} is nondecreasing: E(λ′) ≤ E(λ′′) for λ′ < λ′′.

ii) lim
λ→−∞

E(λ) = 0, and lim
λ→+∞

E(λ) = id.

iii) {E(λ)} is strongly right (resp. left) continuous if and only if {M(λ)} is
right (resp. left) continuous.

iv) For any semiclosed interval I =]λ′, λ′′] ⊂ R, we define E(I) as the projec-
tion on the subspace M(I) = M(λ′′)	M(λ′) 1, and we have

E(I) = E(λ′′)− E(λ′)

Definition 2.3. {E(λ)} is said to be bounded from below if E(µ) = 0 for some
finite µ, that is, {E(λ)} = 0 for λ < µ. The least upper bound of such µ is the
lower bound of {E(λ)}.
{E(λ)} is said to be bounded from above if E(µ) = id for some finite µ, that is,
{E(λ)} = id for λ > µ. The greatest lower bound of such µ is the upper bound
of {E(λ)}.

To any spectral family {E(λ)}, we associate a selfadjoint operator T defined by

T =
∫ +∞

−∞
λdE(λ) (2.1)

on

D(T ) =
{
u ∈ H : ‖Tu‖2 =

∫ +∞

−∞
λ2d 〈E(λ)u, u〉 <∞

}
(2.2)

Theorem 2.4. (The spectral Theorem). Every selfadjoint operator T ad-
mits an expression (2.1) by means of a spectral family {E(λ)} which is uniquely
determined by

E(λ) = 1− 1
2
[
U(λ) + U(λ)2

]
(2.3)

where U(λ) is the partially isometric operator that appears in the polar decom-
position T − λ = U(λ)|T − λ|, 2 of T − λ.

We have the following properties:

〈Tu, v〉 =
∫ +∞

−∞
λd 〈E(λ)u, v〉 for u ∈ D(T ), v ∈ H (2.4)

〈Tu, u〉 ≤ λ‖u‖2 for u ∈ E(λ)H (2.5)
1A	B := A

⋂
B⊥ is the orthogonal complement of B in A.

2|A| =
∑

αk 〈., ϕk〉ϕk, where {ϕk} is a set of eigenfunctions of A defining an orthonormal
basis of H, and α1 ≥ α2 ≥ · · · > 0 satisfie A∗Aϕk = α2

kϕk, k = 1, 2 . . . .

5
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λ‖u‖2 ≤ 〈Tu, u〉 ≤ µ‖u‖2 for u ∈ E(µ)H 	 E(λ)H (2.6)

〈Tu, u〉 ≥ µ‖u‖2 for u ∈ [E(µ)H]⊥
⋂
D(T ) (2.7)

2.2 A quadratic form on fractional Sobolev spaces

Suppose that T is semi bounded from below, that is, there exists a constant δ
such that

〈Tu, u〉 ≥ δ‖u‖2, for u ∈ D(T ) (2.8)

For simplicity, we will take δ = 1. Then E(λ) = 0 for λ < 1, where {E(λ), λ ∈ R}
denotes the spectral family associated with T . Hence one can define T 1/2 as

T 1/2 :=
∫ +∞

1

λ1/2dE(λ),

on

D(T 1/2) =
{
u ∈ H : ‖T 1/2u‖2 =

∫ +∞

1

λd 〈E(λ)u, u〉 <∞
}
.

For each positive real s, one can define T s/2 as

As := T s/2 =
∫ +∞

1

λs/2dE(λ),

on

Es := D(As) =
{
u ∈ H : ‖Asu‖2 =

∫ +∞

1

λsd 〈E(λ)u, u〉 <∞
}
.

Es is a Hilbert space, with the inner product

〈u, v〉Es = 〈Asu,Asv〉

From (2.8), it follows that

‖Asu‖ ≥ ‖u‖ for all u ∈ Es (2.9)

For s, t > 0 with s+ t = 2, we define the Hilbert space E := Es ×Et, with the
inner product 〈., .〉E = 〈., .〉Es + 〈., .〉Et .
Let B be the bilinear form defined on E × E by

B[(u, v), (ϕ,ψ)] =
〈
Asu,Atψ

〉
+
〈
Asϕ,Atv

〉
Since B is symmetric and continuous, it induces a self adjoint bounded linear
operator L : E −→ E such that

B[z, η] = 〈Lz, η〉E , for z, η ∈ E,

6
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and L is defined by

Lz =
〈
A−sAtv,A−tAsu

〉
E
, for z = (u, v) ∈ E. (2.10)

We consider the following eigenvalue problem

Lz = λz (2.11)

Using (2.10), the problem ( 2.11) is equivalent to

A−sAtv = λu (2.12)

and
A−tAsu = λv (2.13)

According to (2.9), As and At are isomorphisms, and then λ cannot be zero.
Hence, injecting (2.12) in (2.13) we obtain

v = λ2v,

which yields that λ = 1 or λ = −1.
The corresponding eigenspaces are

E+ =
{

(u,A−tAsu) : u ∈ Es
}

for λ = 1,

and
E− =

{
(u,−A−tAsu) : u ∈ Es

}
for λ = −1.

and are orthogonal with respect to the bilinear form B, that is,

B(z+, z−) = 0 for all z+ ∈ E+, z− ∈ E−.

We also have E = E+ ⊕ E−.
We define the quadratic form Q associated with the bilinear form B, by

Q(z) =
1
2
B[z, z] =

〈
Asu,Atv

〉
, for z = (u, v) ∈ E (2.14)

which yields for z = z+ + z−, z+ ∈ E+, z− ∈ E−, that

1
2
‖z‖2E = Q(z+)−Q(z−) (2.15)

and that, there exists a constant c0 > 0, such that

Q(z) ≥ c0‖z‖2E for z ∈ E+ (2.16)

and
Q(z) ≤ −c0‖z‖2E for z ∈ E− (2.17)

7
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2.3 Rigorous variational formulation of the problem

We take T = −∆Hn . In order to have the Poincaré type inequality (2.8), we
shall work on a bounded or a strongly asymptotically contractive domain of
Ω ⊂ Hn.
Let H = L2(Ω), As = (−∆Hn)

s
2 and Es = D((−∆Hn)

s
2 ) .

The appropriate functional to be associated to problem (P ) in case I is

J(u, v) :=
∫

Ω

Asu.Atv dξ −
∫

Ω

[|u|p + |v|q] dξ (2.18)

where s+ t = 2, s, t > 0 and

p ≤ 2N
N − 2s

, q ≤ 2N
N − 2t

.

In case II we take s = t = 1, and hence we regain the form in (1.3).

3 Minimax theorem and Plais-Smale sequence

In this section, we establish the linking geometry of J on bounded or strongly
asymptitically contractive domain of Hn, to give a Palais-Smale sequence by the
minimax principle used in [14] and [3].

Definition 3.1. Let S be a closed subset of a Banach space X, and Q a
sub-manifold of X, with relative boundary ∂Q.
We say that S and ∂Q link if:

1. S ∩ ∂Q = ∅.

2. ∀h ∈ C0(X,X) such that h|∂Q = id, there holds h(Q) ∩ S 6= ∅.

Theorem 3.2. Let J : X −→ R be a C1 functional. Consider a closed subset
S ⊂ X, and a sub-manifold Q ⊂ X, with relative boundary ∂Q. Suppose:

1. S and ∂Q link.

2. ∃δ > 0 such that
J(z) ≥ δ ∀z ∈ S,

J(z) ≤ 0 ∀z ∈ ∂Q.

Let
Γ := {h ∈ C0(X,X) | h|∂Q = id},

and
c := inf

h∈Γ
sup
z∈Q

J(h(z)) ≥ δ.
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Then there exists a sequence (zk)k∈N ⊂ X, such that J(zk) −−−−→
k→∞

c,

J ′(zk) −−−−→
k→∞

0.
(3.1)

We choose numbers µ > 1, ν > 1, such that
1
p
<

µ

µ+ ν
, and

1
q
<

ν

µ+ ν
.

The following propositions give the linking geometry of J . Their proofs are
similar to those in [3] and will be omitted.

Proposition 3.3. There exist ρ > 0, δ > 0, such that if we define

S := {(ρµ−1u, ρν−1v) | ‖(u, v)‖ = ρ, (u, v) ∈ E+},

then
J(z) ≥ δ ∀z ∈ S.

Proposition 3.4. There exist σ > 0, M > 0, such that if we define
Q = {τ(σµ−1u+, σ

ν−1v+) + (σµ−1u, σν−1v) | 0 ≤ τ ≤ σ, 0 ≤ ‖(u, v)‖E≤M,

and (u, v) ∈ E−}, where z+ = (u+, v+) ∈ E+, with u+ some fixed eigenvector
of −∆Hn , then

J(z) ≤ 0 ∀z ∈ ∂Q,

where ∂Q is the boundary of Q, relative to the subspace{
τ(σµ−1u+, σ

ν−1v+) + (σµ−1u, σν−1v) | τ ∈ R, (u, v) ∈ E−
}
.

Proposition 3.5. Let Ω ⊆ Hn be any bounded or unbounded domain of Hn,
and let (zk = (uk, vk))k∈N ⊂ E be a Palais-Smale sequence of J at level c, that
is,

J(zk) −−−−→
k→∞

c, and J ′(zk) −−−−→
k→∞

0. (3.2)

Then (zk)k∈N is bounded.

Proof. Let (zk = (uk, vk))k∈N be a sequence of E satisfying (3.2). Then, there
exists a sequence εk −−−−→

k→∞
0, such that

|J ′(zk)η| ≤ εk‖η‖E ∀η ∈ E. (3.3)

Taking ηk =
pq

p+ q

(
1
p
uk,

1
q
vk

)
, and using (3.2), we obtain

c+ εk‖η‖E ≥ J(zk)− J ′(zk)ηk =
(

pq

p+ q
− 1
)∫

Ω

|uk|p + |vk|qdξ. (3.4)

Hence, there exists a positive constant C such that∫
Hn
|uk|p + |vk|qdξ ≤ C (1 + ‖zk‖E) = C (1 + ‖uk‖Es + ‖vk‖Et) . (3.5)

9
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By considering η = (φ, 0) with φ ∈ Es, we obtain from (3.3)∣∣∣∣∫
Ω

Asφ.Atvkdξ

∣∣∣∣ ≤ p

∫
Ω

|uk|p−1|φ|dξ + εk‖φ‖Es (3.6)

≤ C
(
‖uk‖p−1

Lp(Ω) + 1
)
‖φ‖Es . (3.7)

Taking φ = vk, we obtain

‖vk‖Et ≤ C
(
‖uk‖p−1

Lp(Ω) + 1
)
. (3.8)

Similar reasoning yields that

‖uk‖Es ≤ C
(
‖vk‖q−1

Lq(Ω) + 1
)
. (3.9)

Replacing (3.8) and (3.9) into (3.5), we obtain

‖uk‖Es + ‖vk‖Et ≤ C
(
‖uk‖

p−1
p

Es + ‖vk‖
q−1
q

Et + 1
)
. (3.10)

Since the exponents in the right-hand side of (3.10) are less then 1, the sequence
zk is bounded in E.

2
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4 Existence in the subcritical case on a strongly
asymptotically contractive domain

Proof of Theorem 1.2.
By Theorem 3.2, we obtain a critical sequence (zk) on Ω satisfying equation (3.1).
According to Proposition 3.5, the sequence is bounded, therefore a relabeled
subsequence converges weakly to a limit z. Sinc J ′ is continuous in the weak
topology J ′(z) = 0.
We claim that z 6= 0. Suppose it were, then by compact Sobolev embeddings,∫

Ω

[|uk|p + |vk|q] dξ → 0. (4.1)

We also have J ′(zk)zk → 0 since zk is bounded, but combining this with equation
(4.1), one obtains that ‖zk‖2 → 0 contradicting (3.1) since c > 0.

2

5 Existence in the critical case on Hn

5.1 Abstract concentration compactness

In this section, we recall the abstract concentration compactness due to I.Schindler,
and K.Tintarev [16], and we give a version adapted to our problem.
Let H be a separable Hilbert space, and let D be a bounded multiplicative
group of bounded linear operators on H.

Definition 5.1. We say that D is a set of dislocations if it satisfies the following
conditions:

P1) Let gk ∈ D. If gk 6⇀ 0, and if uk ⇀ 0, then there exists a subsequence
such that gkuk ⇀ 0.

P2) If there exists a u ∈ H \ {0} such that gku ⇀ 0, then gk ⇀ 0.

P3) If gk ∈ D, and uk ⇀ 0, then g∗kgkuk ⇀ 0.

Definition 5.2. Let u, uk ∈ H. We say that uk converges to u weakly with
concentration, and we note uk

D
⇀ u, if ∀φ ∈ H∗

lim
k→∞

sup
g∈D

(g(uk − u), φ) = 0.

If D is a compact group, concentrated weak convergence is equivalent to weak
convergence.

11
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Theorem 5.3. Let (uk)k∈N ⊂ H be a bounded sequence, and let D be a set of
dislocations. Then there exist (w(n))n∈N ⊂ H, (g(n)

k )n∈N ⊂ D, k ∈ N, such that
for a renamed subsequence,

g
(1)
k = id, g

(n)−1

k g
(m)
k ⇀ 0 for n 6= m,

w(n) = w − lim
k
g

(n)−1

k uk,

uk −
∑
n∈N

g
(n)
k w(n) D

⇀ 0.

5.2 Concretisation of the abstract concentration compact-
ness on E

Let D be the infinite multiplicative group of bounded linear operators
defined on E by

gλ,α(u(ξ), v(ξ)) =
(
λ

2n+2
p u(α ◦ δλξ), λ

2n+2
q v(α ◦ δλξ)

)
=

(
g1
λ,αu, g

2
λ,αv

)
where α ∈ R2n+1, and λ is a positive real.

Lemma 5.4. D is a set of dislocations.

Proof. Let z := (u, v) ∈ H. Properties P1), P2) are clearly satisfied since we
observe that

gk := gλk,αk ⇀ 0⇐⇒ αk −→∞, or λk −→ 0, or λk −→∞.

Observe that g∗k = g−1
k , which yields P3).

2

The following theorem is a corollary of Theorem 5.3. See [15].

Theorem 5.5. Let (zk = (uk, vk))k be a bounded sequence in E. Then for a
renamed subsequence, there exist w(1), w(2), · · · ∈ E, and (α(1)

k , λ
(1)
k ), (α(2)

k , λ
(2)
k ),

· · · ∈ Hn × R+
∗ , such that

w(n) = w − lim
k→∞

g 1

λ
(n)
k

,−α(n)
k

zk,

and for r 6= m

λ
(r)
k /λ

(m)
k →∞, or λ(r)

k /λ
(m)
k → 0, or |α(r)

k − α
(m)
k | → ∞.

12
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The series
∑
n

g
λ

(n)
k ,α

(n)
k

w(n) converges absolutely in E, and:

zk −
∑
n

g
λ

(n)
k ,α

(n)
k

w(n) D
⇀ 0.

Lemma 5.6. Let (uk)k be a bounded sequence in S2
1(Hn) ∩ Lp(Hn).

If uk
D
⇀ 0, then modulo a subsequence, lim

k→∞
‖uk‖Lp(Hn) = 0, for all p ≥ 1.

For the proof we need the following Sobolev embedding theorem [18]:

Theorem 5.7. Let Ω be a bounded open set of Hn. Then
◦
S2

1 (Ω) is compactly
embedded in Lp, for 1 ≤ p < N∗.

We need, also the following lemma, which is an adapted version of Lemma 1.1 in [10]:

Lemma 5.8. Let (uk)k∈N be a bounded sequence in S2
1(Hn), such that,

for some R > 0

lim inf
k→∞

sup
y∈Hn

∫
B(y,R)

u2
kdξ = 0 (5.1)

Then uk −−−−→
k→∞

0 in Ls(Hn), for 2 < s < N∗.

Proof of Lemma 5.6. Note that uk
D
⇀ 0 =⇒ ∀g ∈ D : guk ⇀ 0.

We will give the proof in two steps, the first step deal with the case 1 ≤ p < N∗,
and the second deal with the case p ≥ N∗:

Let 1 ≤ p < N∗, α ∈ Hn, g = g1,−α, and B = B(ξ,R) be a ball of center ξ and
radius R.
According to the Theorem 5.7, we obtain:

‖g1
1,−αuk‖

p
Lp(B) ≤ C‖g

1
1,−αuk‖2◦

S2
1(B)
‖g1

1,−αuk‖
p−2
Lp(B) (5.2)

Let {B = B(ξ,R), ξ ∈ Z} be a finite cover for Hn. So, by summing inequalities
(5.2) over ξ ∈ Z, we obtain:

‖uk‖pLp(Hn) ≤ C‖uk‖
2
S2

1(Hn) sup
ξ∈Z
‖g1

1,−αuk‖
p−2
Lp(B(ξ,R))

By the compactness of the embedding of
◦
S2

1 (B) into Lp(B), it follows that,
modulo a subsequence, g1

1,−αuk −−−−→
k→∞

0 in Lp(B).

Hence, ‖uk‖Lp(Hn) −−−−→
k→∞

0 for 1 ≤ p < N∗.

Let us now deal with the case p ≥ N∗.
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Let g = gλ−1
k ,0, where λk −−−−−→k→+∞

+∞ is chosen such that∫
|uk|>λ

2n+2
p

k

|uk|p −→ 0;

and let wk(ξ) = g2
λ−1
k ,0

uk(ξ) = λ
− 2n+2

p

k uk(δλ−1
k
ξ), i.e uk(ξ) = λ

2n+2
p

k wk(δλkξ).
We have∫
|uk|<λ

2n+2
p

k

|uk|pdξ =
∫
|wk|<1

|wk|pdξ ≤
∫

Hn
|wk(x)|sdξ, where 2 < s < N∗ ≤ p.

Note that the hypothesis (5.1) is satisfied if we take g = g1,y. So, according to

Lemma 5.8,
∫

Hn
|wk(x)|sdξ −−−−→

k→∞
0.

Hence ‖uk‖Lp(Hn) −−−−→
k→∞

0 for p ≥ N∗.
2

5.3 Proof of the main result

Proof of Theorem 1.3. To be able to use the linking geometry stated in
Proposition 3.3 and Proposition 3.4, we shall work on a bounded domain Ω of

Hn. Note that E1 =
◦
S2

1 .

By Theorem 3.2, we obtain a critical sequence (zk) on Ω. Sinc
◦
S2

1 (Ω) ⊂
◦
S2

1 (Hn)

we may consider (zk) ⊂
◦
S2

1 (Hn). Since J is invariant under the action of gλ,α, we
conclude that the sequence (gλ,αzk), that we denote again by (zk), is a critical
sequence on Hn, and according to Proposition 3.5, it is bounded.
By Theorem 5.5, there exist w(1), w(2), · · · ∈ E, and (α(1)

k , λ
(1)
k ),

(α(2)
k , λ

(2)
k ) · · · ∈ Hn × R+

∗ , such that

zk −
∑
n

g
(n)
k w(n) D

⇀ 0,

where g(n)
k = g

λ
(n)
k ,α

(n)
k

.
(zk) does not converge weakly with concentration to 0. In fact, if we suppose
that zk

D
⇀ 0, we will have by Lemma 5.6, lim

k→∞
‖zk‖Lp(Hn)×Lq(Hn) = 0 (modulo a

subsequence), which shows that J(zk) −→ 0. Contradiction. Then there exists
a w(n0) 6= 0.
On the other hand, for some gk ∈ D, we have

gkzk ⇀ w(n0).

Then,
J ′(gkzk) ⇀ J ′(w(n0))

However, J ′(zk) −−−−→
k→∞

0 =⇒ J ′(gkzk) −−−−→
k→∞

0. Then, J ′(w(n0)) = 0.
2
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