American J. of Mathematics and Sciences
Vol. 3, No -1 ,(January 2014)
Copyright Mind Reader Publications
ISSN No: 2250-3102

On a critical and subcritical system of

 subelliptic equations on unbouded domain ofHeisenberg group

Nasreddine Megrez
Department of Mathematics, Prince Sultan University P.O. Box 66833 , Riyadh, 11586, Saudi Arabia.
email: nmegrez@psu.edu.sa, nmegrez@gmail.com

January 3, 2014

Abstract

We give two existence results for the problem $$
(P):\left\{\begin{array}{l} -\Delta_{\mathbb{H}^{n}} u=q|v|^{q-2} v \text { in } \Omega \\ -\Delta_{\mathbb{H}^{n}} v=p|u|^{p-2} u \text { in } \Omega \\ \lim _{|\xi| \longrightarrow \infty} u(\xi)=0 \\ \lim _{|\xi|} v(\xi)=0 \\ u_{\mid \partial \Omega}=v_{\mid \partial \Omega}=0\left(\text { if } \Omega \neq \mathbb{H}^{n}\right) \end{array}\right.
$$ where $\Delta_{\mathbb{H}^{n}}$ is the Heisenberg Laplacian and \mathbb{H}^{n} is the Heisenberg group. The first existence result is established when Ω is a strongly asymptoticaly contractive domain, and $p, q \leq 2 \frac{n+1}{n-1}$ are superlinear-subcritical, that is $1>\frac{1}{p}+\frac{1}{q}>\frac{n}{n+1}$. The second existence result is established when $\Omega=\mathbb{H}^{n}$, and (p, q) is critical, that is $\frac{1}{p}+\frac{1}{q}=\frac{n}{n+1}$.

Subject Classification: 22E30.

Keywords: Heisenberg Laplacian, Linking, Abstract Concentration Compactness.

Nasreddine Megrez

1 Introduction and main result

We denote by \mathbb{H}^{n} the vector space $\mathbb{R}^{2 n+1}$, of vectors $\xi:=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, t\right):=(x, y, t)$, endowed with the group action:

$$
\xi \circ \xi_{0}=\left(x+x_{0}, y+y_{0}, t+t_{0}+2 \sum_{i=1}^{n}\left(x_{i} y_{0_{i}}-y_{i} x_{0_{i}}\right)\right) .
$$

\mathbb{H}^{n} is a Lie group, called the Heisenberg group, and the corresponding Lie algebra of left invariant vector fields, is generated by:

$$
\left\{\begin{array}{l}
X_{i}=\frac{\partial}{\partial x_{i}}+2 y_{i} \frac{\partial}{\partial t}, i=1, \ldots, n \\
Y_{i}=\frac{\partial}{\partial y_{i}}-2 x_{i} \frac{\partial}{\partial t}, i=1, \ldots, n \\
T=\frac{\partial}{\partial t}
\end{array}\right.
$$

We have $\left[X_{i}, Y_{j}\right]=-4 T \delta_{i, j},\left[X_{j}, X_{k}\right]=\left[Y_{j}, Y_{k}\right]=\left[X_{j}, T\right]=\left[Y_{j}, T\right]=0$.
The Heisenberg Laplacian, (also called the subelliptic Laplacian, or the Kohn Laplacian), is defined as:

$$
\begin{aligned}
\Delta_{\mathbb{H} n} & :=\sum_{i=1}^{n}\left(X_{i}^{2}+Y_{i}^{2}\right) \\
& =\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}{ }^{2}}+\frac{\partial^{2}}{\partial y_{i}{ }^{2}}+4 y_{i} \frac{\partial^{2}}{\partial x_{i} \partial t}-4 x_{i} \frac{\partial^{2}}{\partial y_{i} \partial t}+4\left(x_{i}^{2}+y_{i}^{2}\right) \frac{\partial^{2}}{\partial t^{2}} \\
& =\operatorname{div}(A \nabla u)
\end{aligned}
$$

where A is the following $(2 n+1) \times(2 n+1)$ matrix:

$$
\left(\begin{array}{ccc}
I_{n} & 0 & 2 y^{t} \\
0 & I_{n} & -2 x^{t} \\
2 y & -2 x & 4\left(x^{2}+y^{2}\right)
\end{array}\right)
$$

Observe that A is a positive semi definite matrix, with $\operatorname{det}(A) \equiv 0$ for all $(x, y, t) \in \mathbb{H}^{n}$, and $\operatorname{rank}(A)=2 n$.
A natural group of dilations on \mathbb{H}^{n}, is given by:

$$
\delta_{\lambda}(\xi):=\left(\lambda x, \lambda y, \lambda^{2} t\right), \quad \lambda>0 .
$$

The Jacobian determinant of δ_{λ} is λ^{N}, where $N=2 n+2$ is the homogeneous dimension of \mathbb{H}^{n}.
$N^{*}:=\frac{2 N}{N-2}$, is the critical Sobolev exponent for $\Delta_{\mathbb{H}^{n}}$.
Let Ω be an open set of \mathbb{H}^{n}. We denote by $\stackrel{\circ}{S}_{1}^{2}(\Omega)$ the Folland-Stein Sobolev space, defined as the closure of $C_{0}^{\infty}(\Omega)$, under the norm:

$$
\|u\|_{S_{1}^{2}(\Omega)}^{2}:=\int_{\Omega}\left|\nabla_{\mathbb{H}^{n}} u\right|^{2} d \xi
$$

Note that $\stackrel{\circ}{S_{1}^{2}}\left(\mathbb{H}^{n}\right)=S_{1}^{2}\left(\mathbb{H}^{n}\right)$.
Definition 1.1. A domain $\Omega \subset \mathbb{H}^{n}$ is said to be strongly asymptotically contractive (S.A.C for simplicity), if $\Omega \neq \mathbb{H}^{n}$ and for any sequence $\eta_{j} \in \mathbb{H}^{n}$ such that $\left|\eta_{j}\right| \longrightarrow \infty$, there exists a subsequence $\eta_{j_{l}}$ such that either
i) $\left|\bigcup_{n=1}^{\infty} \bigcap_{l=n}^{\infty}\left(\eta_{j_{l}} \circ \Omega\right)\right|=0$,
or
ii) $\exists \eta_{0} \in \mathbb{H}^{n}$ such that for any $R>0$ there exist an open set $M_{R} \subset \subset \eta_{0} \circ \Omega$, a closed set Z of measure zero and an integer $l_{R}>0$ such that

$$
\left(\eta_{j_{l}} \circ \Omega\right) \cap B_{R}(0) \subset M_{R} \cup Z, \text { for any } l \geq l_{R}
$$

Let $\Omega \subseteq \mathbb{H}^{n}$ be unbounded, and p, q two positives real.
In this paper, we give two existence results for the problem

$$
(P):\left\{\begin{array}{l}
-\Delta_{\mathbb{H}^{n}} u=q|v|^{q-2} v \text { in } \Omega \\
-\Delta_{\mathbb{H}^{n}} v=p|u|^{p-2} u \text { in } \Omega \\
\lim u(\xi)=0 \\
|\xi| \longrightarrow \infty \\
\lim ^{p} v(\xi)=0 \\
|\xi| \longrightarrow \infty \\
u_{\mid \partial \Omega}=v_{\mid \partial \Omega}=0\left(\text { if } \Omega \neq \mathbb{H}^{n}\right)
\end{array}\right.
$$

according to the following cases:
Case I: Ω is strongly asymptoticaly contractive domain, and $p, q \leq \frac{2 N}{N-4}$, and are superlinear-subcritical, that is

$$
\begin{equation*}
1>\frac{1}{p}+\frac{1}{q}>\frac{N-2}{N}=\frac{n}{n+1} \tag{1.1}
\end{equation*}
$$

Case II: $\Omega=\mathbb{H}^{n}$, and (p, q) is critical, that is

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}=\frac{N-2}{N}=\frac{n}{n+1} \tag{1.2}
\end{equation*}
$$

Let \mathcal{H} be the Banach space $\left(S_{1}^{2}\left(\mathbb{H}^{n}\right) \cap L^{p}\left(\mathbb{H}^{n}\right)\right) \times\left(S_{1}^{2}\left(\mathbb{H}^{n}\right) \cap L^{q}\left(\mathbb{H}^{n}\right)\right)$, equipped with the norm:

$$
\|(u, v)\|_{\mathcal{H}}=\|u\|_{S_{1}^{2}\left(\mathbb{H}^{n}\right)}+\|v\|_{S_{1}^{2}\left(\mathbb{H}^{n}\right)} .
$$

A weak solution of the problem (P) is a critical point of the functional J defined by:

Nasreddine Megrez

$$
\begin{equation*}
J(u, v):=\int_{\Omega} \nabla_{\mathbb{H}^{n}} u \cdot \nabla_{\mathbb{H}^{n}} v d \xi-\int_{\Omega}\left[|u|^{p}+|v|^{q}\right] d \xi \tag{1.3}
\end{equation*}
$$

where $\nabla_{\mathbb{H}^{n}}:=\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$
The quadratic part of J is well defined on $\stackrel{\circ}{S_{1}^{2}}(\Omega) \times \stackrel{\circ}{S_{1}^{2}}(\Omega)$, and the second part is well defined if $p, q \leq \frac{N+2}{N-2}$. However, for subcritical $(p, q) \quad((1.1))$, at less one of the variables p, q is greater then $\frac{N+2}{N-2}$. For this matter, we will use in case I, fractional Sobolev spaces

$$
E_{s, t}=D\left(\left(-\Delta_{\mathbb{H}^{n}}\right)^{\frac{s}{2}}\right) \times D\left(\left(-\Delta_{\mathbb{H}^{n}}\right)^{\frac{t}{2}}\right), s, t>0, s+t=2
$$

allowing us to take $p>\frac{N+2}{N-2}$, if $q<\frac{N+2}{N-2}$, and to use some compact sobolev embedings. In case II, J is well defined and of class C^{1} on \mathcal{H}, and in vertue of abstract concentration compactness we dont need compact embedings.

Our main results are:
Theorem 1.2. In the case I, the problem (P) has a weak solution in $E_{s, t}$
Theorem 1.3. In the case II, the problem (P) has a weak solution in \mathcal{H}.

2 Functional analytic frame work

In this section, we expose an abstract analytic frame work.

2.1 Spectral families

For completion, we recall results on spectral families (see [7]). Let H be a Hilbert space endowed with a scalar product $<., .>$ and its associated norm $\|\cdot\|$. Suppose there is a nondecreasing family $\{M(\lambda), \lambda \in \mathbb{R}\}$ of closed subspaces of H, such that $\bigcap_{\lambda \in \mathbb{R}} M(\lambda)=\{0\}$, and $\overline{\bigcup_{\lambda \in \mathbb{R}} M(\lambda)}=H$.
For any fixed λ, we have

$$
M(\lambda-0):=\overline{\bigcup_{\lambda^{\prime}<\lambda} M\left(\lambda^{\prime}\right)} \subset M(\lambda) \subset M(\lambda+0):=\bigcap_{\lambda^{\prime}>\lambda} M\left(\lambda^{\prime}\right)
$$

Definition 2.1. We say that the family $\{M(\lambda)\}$ is right continuous at λ if $M(\lambda+0)=M(\lambda)$, left continuous if $M(\lambda-0)=M(\lambda)$, and continuous if it is both right and left continuous.

Definition 2.2. The family $\{E(\lambda)\}$ of orthogonal projections on $M(\lambda)$, is called spectral family, and we have:
i) $\{E(\lambda)\}$ is nondecreasing: $E\left(\lambda^{\prime}\right) \leq E\left(\lambda^{\prime \prime}\right)$ for $\lambda^{\prime}<\lambda^{\prime \prime}$.
ii) $\lim _{\lambda \rightarrow-\infty} E(\lambda)=0$, and $\lim _{\lambda \rightarrow+\infty} E(\lambda)=i d$.
iii) $\{E(\lambda)\}$ is strongly right (resp. left) continuous if and only if $\{M(\lambda)\}$ is right (resp. left) continuous.
iv) For any semiclosed interval $\left.I=] \lambda^{\prime}, \lambda^{\prime \prime}\right] \subset \mathbb{R}$, we define $E(I)$ as the projection on the subspace $M(I)=M\left(\lambda^{\prime \prime}\right) \ominus M\left(\lambda^{\prime}\right)^{1}$, and we have

$$
E(I)=E\left(\lambda^{\prime \prime}\right)-E\left(\lambda^{\prime}\right)
$$

Definition 2.3. $\{E(\lambda)\}$ is said to be bounded from below if $E(\mu)=0$ for some finite μ, that is, $\{E(\lambda)\}=0$ for $\lambda<\mu$. The least upper bound of such μ is the lower bound of $\{E(\lambda)\}$.
$\{E(\lambda)\}$ is said to be bounded from above if $E(\mu)=i d$ for some finite μ, that is, $\{E(\lambda)\}=i d$ for $\lambda>\mu$. The greatest lower bound of such μ is the upper bound of $\{E(\lambda)\}$.

To any spectral family $\{E(\lambda)\}$, we associate a selfadjoint operator T defined by

$$
\begin{equation*}
T=\int_{-\infty}^{+\infty} \lambda d E(\lambda) \tag{2.1}
\end{equation*}
$$

on

$$
\begin{equation*}
D(T)=\left\{u \in H:\|T u\|^{2}=\int_{-\infty}^{+\infty} \lambda^{2} d\langle E(\lambda) u, u\rangle<\infty\right\} \tag{2.2}
\end{equation*}
$$

Theorem 2.4. (The spectral Theorem). Every selfadjoint operator T admits an expression (2.1) by means of a spectral family $\{E(\lambda)\}$ which is uniquely determined by

$$
\begin{equation*}
E(\lambda)=1-\frac{1}{2}\left[U(\lambda)+U(\lambda)^{2}\right] \tag{2.3}
\end{equation*}
$$

where $U(\lambda)$ is the partially isometric operator that appears in the polar decomposition $T-\lambda=U(\lambda)|T-\lambda|,{ }^{2}$ of $T-\lambda$.

We have the following properties:

$$
\begin{align*}
\langle T u, v\rangle= & \int_{-\infty}^{+\infty} \lambda d\langle E(\lambda) u, v\rangle \text { for } u \in D(T), v \in H \tag{2.4}\\
& \langle T u, u\rangle \leq \lambda\|u\|^{2} \text { for } u \in E(\lambda) H \tag{2.5}
\end{align*}
$$

[^0]
Nasreddine Megrez

$$
\begin{gather*}
\lambda\|u\|^{2} \leq\langle T u, u\rangle \leq \mu\|u\|^{2} \text { for } u \in E(\mu) H \ominus E(\lambda) H \tag{2.6}\\
\langle T u, u\rangle \geq \mu\|u\|^{2} \text { for } u \in[E(\mu) H]^{\perp} \bigcap D(T) \tag{2.7}
\end{gather*}
$$

2.2 A quadratic form on fractional Sobolev spaces

Suppose that T is semi bounded from below, that is, there exists a constant δ such that

$$
\begin{equation*}
\langle T u, u\rangle \geq \delta\|u\|^{2}, \text { for } u \in D(T) \tag{2.8}
\end{equation*}
$$

For simplicity, we will take $\delta=1$. Then $E(\lambda)=0$ for $\lambda<1$, where $\{E(\lambda), \lambda \in \mathbb{R}\}$ denotes the spectral family associated with T. Hence one can define $T^{1 / 2}$ as

$$
T^{1 / 2}:=\int_{1}^{+\infty} \lambda^{1 / 2} d E(\lambda)
$$

on

$$
D\left(T^{1 / 2}\right)=\left\{u \in H:\left\|T^{1 / 2} u\right\|^{2}=\int_{1}^{+\infty} \lambda d\langle E(\lambda) u, u\rangle<\infty\right\} .
$$

For each positive real s, one can define $T^{s / 2}$ as

$$
A^{s}:=T^{s / 2}=\int_{1}^{+\infty} \lambda^{s / 2} d E(\lambda)
$$

on

$$
E^{s}:=D\left(A^{s}\right)=\left\{u \in H:\left\|A^{s} u\right\|^{2}=\int_{1}^{+\infty} \lambda^{s} d\langle E(\lambda) u, u\rangle<\infty\right\} .
$$

E^{s} is a Hilbert space, with the inner product

$$
\langle u, v\rangle_{E^{s}}=\left\langle A^{s} u, A^{s} v\right\rangle
$$

From (2.8), it follows that

$$
\begin{equation*}
\left\|A^{s} u\right\| \geq\|u\| \text { for all } u \in E^{s} \tag{2.9}
\end{equation*}
$$

For $s, t>0$ with $s+t=2$, we define the Hilbert space $E:=E^{s} \times E^{t}$, with the inner product $\langle., .\rangle_{E}=\langle., .\rangle_{E^{s}}+\langle., .\rangle_{E^{t}}$.
Let B be the bilinear form defined on $E \times E$ by

$$
B[(u, v),(\varphi, \psi)]=\left\langle A^{s} u, A^{t} \psi\right\rangle+\left\langle A^{s} \varphi, A^{t} v\right\rangle
$$

Since B is symmetric and continuous, it induces a self adjoint bounded linear operator $L: E \longrightarrow E$ such that

$$
B[z, \eta]=\langle L z, \eta\rangle_{E}, \text { for } z, \eta \in E \text {, }
$$

and L is defined by

$$
\begin{equation*}
L z=\left\langle A^{-s} A^{t} v, A^{-t} A^{s} u\right\rangle_{E}, \text { for } z=(u, v) \in E \tag{2.10}
\end{equation*}
$$

We consider the following eigenvalue problem

$$
\begin{equation*}
L z=\lambda z \tag{2.11}
\end{equation*}
$$

Using (2.10), the problem (2.11) is equivalent to

$$
\begin{equation*}
A^{-s} A^{t} v=\lambda u \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{-t} A^{s} u=\lambda v \tag{2.13}
\end{equation*}
$$

According to (2.9), A^{s} and A^{t} are isomorphisms, and then λ cannot be zero. Hence, injecting (2.12) in (2.13) we obtain

$$
v=\lambda^{2} v
$$

which yields that $\lambda=1$ or $\lambda=-1$.
The corresponding eigenspaces are

$$
E^{+}=\left\{\left(u, A^{-t} A^{s} u\right): u \in E^{s}\right\} \text { for } \lambda=1,
$$

and

$$
E^{-}=\left\{\left(u,-A^{-t} A^{s} u\right): u \in E^{s}\right\} \text { for } \lambda=-1
$$

and are orthogonal with respect to the bilinear form B, that is,

$$
B\left(z^{+}, z^{-}\right)=0 \text { for all } z^{+} \in E^{+}, z^{-} \in E^{-}
$$

We also have $E=E^{+} \oplus E^{-}$.
We define the quadratic form Q associated with the bilinear form B, by

$$
\begin{equation*}
Q(z)=\frac{1}{2} B[z, z]=\left\langle A^{s} u, A^{t} v\right\rangle, \text { for } z=(u, v) \in E \tag{2.14}
\end{equation*}
$$

which yields for $z=z^{+}+z^{-}, z^{+} \in E^{+}, z^{-} \in E^{-}$, that

$$
\begin{equation*}
\frac{1}{2}\|z\|_{E}^{2}=Q\left(z^{+}\right)-Q\left(z^{-}\right) \tag{2.15}
\end{equation*}
$$

and that, there exists a constant $c_{0}>0$, such that

$$
\begin{equation*}
Q(z) \geq c_{0}\|z\|_{E}^{2} \text { for } z \in E^{+} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
Q(z) \leq-c_{0}\|z\|_{E}^{2} \text { for } z \in E^{-} \tag{2.17}
\end{equation*}
$$

Nasreddine Megrez

2.3 Rigorous variational formulation of the problem

We take $T=-\Delta_{\mathbb{H}^{n}}$. In order to have the Poincaré type inequality (2.8), we shall work on a bounded or a strongly asymptotically contractive domain of $\Omega \subset \mathbb{H}^{n}$.

Let $H=L^{2}(\Omega), A^{s}=\left(-\Delta_{\mathbb{H}^{n}}\right)^{\frac{s}{2}}$ and $E^{s}=D\left(\left(-\Delta_{\mathbb{H}^{n}}\right)^{\frac{s}{2}}\right)$.
The appropriate functional to be associated to problem (P) in case I is

$$
\begin{equation*}
J(u, v):=\int_{\Omega} A^{s} u \cdot A^{t} v d \xi-\int_{\Omega}\left[|u|^{p}+|v|^{q}\right] d \xi \tag{2.18}
\end{equation*}
$$

where $s+t=2, s, t>0$ and

$$
p \leq \frac{2 N}{N-2 s}, \quad q \leq \frac{2 N}{N-2 t}
$$

In case II we take $s=t=1$, and hence we regain the form in (1.3).

3 Minimax theorem and Plais-Smale sequence

In this section, we establish the linking geometry of J on bounded or strongly asymptitically contractive domain of \mathbb{H}^{n}, to give a Palais-Smale sequence by the minimax principle used in [14] and [3].

Definition 3.1. Let S be a closed subset of a Banach space X, and Q a sub-manifold of X, with relative boundary ∂Q.
We say that S and ∂Q link if:

1. $S \cap \partial Q=\emptyset$.
2. $\forall h \in C^{0}(X, X)$ such that $h_{\left.\right|_{\partial Q}}=i d$, there holds $h(Q) \cap S \neq \emptyset$.

Theorem 3.2. Let $J: X \longrightarrow \mathbb{R}$ be a C^{1} functional. Consider a closed subset $S \subset X$, and a sub-manifold $Q \subset X$, with relative boundary ∂Q. Suppose:

1. S and ∂Q link.
2. $\exists \delta>0$ such that

$$
\begin{gathered}
J(z) \geq \delta \forall z \in S, \\
J(z) \leq 0 \forall z \in \partial Q .
\end{gathered}
$$

Let

$$
\Gamma:=\left\{h \in C^{0}(X, X) \mid h_{\mid \partial Q}=i d\right\},
$$

and

$$
c:=\inf _{h \in \Gamma} \sup _{z \in Q} J(h(z)) \geq \delta .
$$

Then there exists a sequence $\left(z_{k}\right)_{k \in \mathbb{N}} \subset X$, such that

$$
\left\{\begin{array}{lll}
J\left(z_{k}\right) & \overrightarrow{k \rightarrow \infty} & c, \tag{3.1}\\
J^{\prime}\left(z_{k}\right) & \underset{k \rightarrow \infty}{ } & 0 .
\end{array}\right.
$$

We choose numbers $\mu>1, \nu>1$, such that $\frac{1}{p}<\frac{\mu}{\mu+\nu}$, and $\frac{1}{q}<\frac{\nu}{\mu+\nu}$.
The following propositions give the linking geometry of J. Their proofs are similar to those in [3] and will be omitted.

Proposition 3.3. There exist $\rho>0, \delta>0$, such that if we define

$$
S:=\left\{\left(\rho^{\mu-1} u, \rho^{\nu-1} v\right) \mid\|(u, v)\|=\rho,(u, v) \in E^{+}\right\}
$$

then

$$
J(z) \geq \delta \forall z \in S
$$

Proposition 3.4. There exist $\sigma>0, M>0$, such that if we define $Q=\left\{\tau\left(\sigma^{\mu-1} u_{+}, \sigma^{\nu-1} v_{+}\right)+\left(\sigma^{\mu-1} u, \sigma^{\nu-1} v\right) \mid 0 \leq \tau \leq \sigma, 0 \leq\|(u, v)\|_{E} \leq M\right.$, and $\left.(u, v) \in E^{-}\right\}$, where $z^{+}=\left(u_{+}, v_{+}\right) \in E^{+}$, with u_{+}some fixed eigenvector of $-\Delta_{\mathbb{H}^{n}}$, then

$$
J(z) \leq 0 \forall z \in \partial Q,
$$

where ∂Q is the boundary of Q, relative to the subspace

$$
\left\{\tau\left(\sigma^{\mu-1} u_{+}, \sigma^{\nu-1} v_{+}\right)+\left(\sigma^{\mu-1} u, \sigma^{\nu-1} v\right) \mid \tau \in \mathbb{R},(u, v) \in E^{-}\right\} .
$$

Proposition 3.5. Let $\Omega \subseteq \mathbb{H}^{n}$ be any bounded or unbounded domain of \mathbb{H}^{n}, and let $\left(z_{k}=\left(u_{k}, v_{k}\right)\right)_{k \in \mathbb{N}} \subset E$ be a Palais-Smale sequence of J at level c, that is,

$$
\begin{equation*}
J\left(z_{k}\right) \underset{k \rightarrow \infty}{\longrightarrow} c \text {, and } J^{\prime}\left(z_{k}\right) \xrightarrow[k \rightarrow \infty]{\longrightarrow} 0 . \tag{3.2}
\end{equation*}
$$

Then $\left(z_{k}\right)_{k \in \mathbb{N}}$ is bounded.
Proof. Let $\left(z_{k}=\left(u_{k}, v_{k}\right)\right)_{k \in \mathbb{N}}$ be a sequence of E satisfying (3.2). Then, there exists a sequence $\varepsilon_{k} \xrightarrow[k \rightarrow \infty]{ } 0$, such that

$$
\begin{equation*}
\left|J^{\prime}\left(z_{k}\right) \eta\right| \leq \varepsilon_{k}\|\eta\|_{E} \quad \forall \eta \in E . \tag{3.3}
\end{equation*}
$$

Taking $\eta_{k}=\frac{p q}{p+q}\left(\frac{1}{p} u_{k}, \frac{1}{q} v_{k}\right)$, and using (3.2), we obtain

$$
\begin{equation*}
c+\varepsilon_{k}\|\eta\|_{E} \geq J\left(z_{k}\right)-J^{\prime}\left(z_{k}\right) \eta_{k}=\left(\frac{p q}{p+q}-1\right) \int_{\Omega}\left|u_{k}\right|^{p}+\left|v_{k}\right|^{q} d \xi \tag{3.4}
\end{equation*}
$$

Hence, there exists a positive constant C such that

$$
\begin{equation*}
\int_{\mathbb{H}^{n}}\left|u_{k}\right|^{p}+\left|v_{k}\right|^{q} d \xi \leq C\left(1+\left\|z_{k}\right\|_{E}\right)=C\left(1+\left\|u_{k}\right\|_{E^{s}}+\left\|v_{k}\right\|_{E^{t}}\right) . \tag{3.5}
\end{equation*}
$$

By considering $\eta=(\phi, 0)$ with $\phi \in E^{s}$, we obtain from (3.3)

$$
\begin{align*}
\left|\int_{\Omega} A^{s} \phi \cdot A^{t} v_{k} d \xi\right| & \leq p \int_{\Omega}\left|u_{k}\right|^{p-1}|\phi| d \xi+\varepsilon_{k}\|\phi\|_{E^{s}} \tag{3.6}\\
& \leq C\left(\left\|u_{k}\right\|_{L^{p}(\Omega)}^{p-1}+1\right)\|\phi\|_{E^{s}} \tag{3.7}
\end{align*}
$$

Taking $\phi=v_{k}$, we obtain

$$
\begin{equation*}
\left\|v_{k}\right\|_{E^{t}} \leq C\left(\left\|u_{k}\right\|_{L^{p}(\Omega)}^{p-1}+1\right) \tag{3.8}
\end{equation*}
$$

Similar reasoning yields that

$$
\begin{equation*}
\left\|u_{k}\right\|_{E^{s}} \leq C\left(\left\|v_{k}\right\|_{L^{q}(\Omega)}^{q-1}+1\right) \tag{3.9}
\end{equation*}
$$

Replacing (3.8) and (3.9) into (3.5), we obtain

$$
\begin{equation*}
\left\|u_{k}\right\|_{E^{s}}+\left\|v_{k}\right\|_{E^{t}} \leq C\left(\left\|u_{k}\right\|_{E^{s}}^{\frac{p-1}{p}}+\left\|v_{k}\right\|_{E^{t}}^{\frac{q-1}{q}}+1\right) . \tag{3.10}
\end{equation*}
$$

Since the exponents in the right-hand side of (3.10) are less then 1 , the sequence z_{k} is bounded in E.

4 Existence in the subcritical case on a strongly asymptotically contractive domain

Proof of Theorem 1.2.

By Theorem 3.2, we obtain a critical sequence $\left(z_{k}\right)$ on Ω satisfying equation (3.1). According to Proposition 3.5, the sequence is bounded, therefore a relabeled subsequence converges weakly to a limit z. Sinc J^{\prime} is continuous in the weak topology $J^{\prime}(z)=0$.
We claim that $z \neq 0$. Suppose it were, then by compact Sobolev embeddings,

$$
\begin{equation*}
\int_{\Omega}\left[\left|u_{k}\right|^{p}+\left|v_{k}\right|^{q}\right] d \xi \rightarrow 0 \tag{4.1}
\end{equation*}
$$

We also have $J^{\prime}\left(z_{k}\right) z_{k} \rightarrow 0$ since z_{k} is bounded, but combining this with equation (4.1), one obtains that $\left\|z_{k}\right\|^{2} \rightarrow 0$ contradicting (3.1) since $c>0$.

5 Existence in the critical case on \mathbb{H}^{n}

5.1 Abstract concentration compactness

In this section, we recall the abstract concentration compactness due to I.SCHINDLER, and K.Tintarev [16], and we give a version adapted to our problem.
Let H be a separable Hilbert space, and let D be a bounded multiplicative group of bounded linear operators on H.

Definition 5.1. We say that D is a set of dislocations if it satisfies the following conditions:

P1) Let $g_{k} \in D$. If $g_{k} \nsim 0$, and if $u_{k} \rightharpoonup 0$, then there exists a subsequence such that $g_{k} u_{k} \rightharpoonup 0$.

P2) If there exists a $u \in H \backslash\{0\}$ such that $g_{k} u \rightharpoonup 0$, then $g_{k} \rightharpoonup 0$.
P3) If $g_{k} \in D$, and $u_{k} \rightharpoonup 0$, then $g_{k}^{*} g_{k} u_{k} \rightharpoonup 0$.
Definition 5.2. Let $u, u_{k} \in H$. We say that u_{k} converges to u weakly with concentration, and we note $u_{k} \xrightarrow{D} u$, if $\forall \phi \in H^{*}$

$$
\lim _{k \rightarrow \infty} \sup _{g \in D}\left(g\left(u_{k}-u\right), \phi\right)=0
$$

If D is a compact group, concentrated weak convergence is equivalent to weak convergence.

Nasreddine Megrez

Theorem 5.3. Let $\left(u_{k}\right)_{k \in \mathbb{N}} \subset H$ be a bounded sequence, and let D be a set of dislocations. Then there exist $\left(w^{(n)}\right)_{n \in \mathbb{N}} \subset H,\left(g_{k}^{(n)}\right)_{n \in \mathbb{N}} \subset D, k \in \mathbb{N}$, such that for a renamed subsequence,

$$
\begin{gathered}
g_{k}^{(1)}=i d, g_{k}^{(n)^{-1}} g_{k}^{(m)} \rightharpoonup 0 \text { for } n \neq m, \\
w^{(n)}=w-\lim _{k} g_{k}^{(n)^{-1}} u_{k}, \\
u_{k}-\sum_{n \in \mathbb{N}} g_{k}^{(n)} w^{(n)} \stackrel{D}{\rightharpoonup} 0 .
\end{gathered}
$$

5.2 Concretisation of the abstract concentration compactness on E

Let D be the infinite multiplicative group of bounded linear operators defined on E by

$$
\begin{aligned}
g_{\lambda, \alpha}(u(\xi), v(\xi)) & =\left(\lambda^{\frac{2 n+2}{p}} u\left(\alpha \circ \delta_{\lambda} \xi\right), \lambda^{\frac{2 n+2}{q}} v\left(\alpha \circ \delta_{\lambda} \xi\right)\right) \\
& =\left(g_{\lambda, \alpha}^{1} u, g_{\lambda, \alpha}^{2} v\right)
\end{aligned}
$$

where $\alpha \in \mathbb{R}^{2 n+1}$, and λ is a positive real.
Lemma 5.4. D is a set of dislocations.
Proof. Let $z:=(u, v) \in \mathcal{H}$. Properties P1), P2) are clearly satisfied since we observe that

$$
g_{k}:=g_{\lambda_{k}, \alpha_{k}} \rightharpoonup 0 \Longleftrightarrow \alpha_{k} \longrightarrow \infty, \text { or } \lambda_{k} \longrightarrow 0, \text { or } \lambda_{k} \longrightarrow \infty \text {. }
$$

Observe that $g_{k}^{*}=g_{k}^{-1}$, which yields $\left.\mathbf{P} 3\right)$.

The following theorem is a corollary of Theorem 5.3. See [15].
Theorem 5.5. Let $\left(z_{k}=\left(u_{k}, v_{k}\right)\right)_{k}$ be a bounded sequence in E. Then for a renamed subsequence, there exist $w^{(1)}, w^{(2)}, \cdots \in E$, and $\left(\alpha_{k}^{(1)}, \lambda_{k}^{(1)}\right),\left(\alpha_{k}^{(2)}, \lambda_{k}^{(2)}\right)$, $\cdots \in \mathbb{H}^{n} \times \mathbb{R}_{*}^{+}$, such that

$$
w^{(n)}=w-\lim _{k \rightarrow \infty} g_{\frac{1}{\lambda_{k}^{(n)}},-\alpha_{k}^{(n)}} z_{k},
$$

and for $r \neq m$

$$
\lambda_{k}^{(r)} / \lambda_{k}^{(m)} \rightarrow \infty, \text { or } \lambda_{k}^{(r)} / \lambda_{k}^{(m)} \rightarrow 0, \text { or }\left|\alpha_{k}^{(r)}-\alpha_{k}^{(m)}\right| \rightarrow \infty .
$$

The series $\sum_{n} g_{\lambda_{k}^{(n)}, \alpha_{k}^{(n)}} w^{(n)}$ converges absolutely in E, and:

$$
z_{k}-\sum_{n} g_{\lambda_{k}^{(n)}, \alpha_{k}^{(n)}} w^{(n)} \xrightarrow{D} 0 .
$$

Lemma 5.6. Let $\left(u_{k}\right)_{k}$ be a bounded sequence in $S_{1}^{2}\left(\mathbb{H}^{n}\right) \cap L^{p}\left(\mathbb{H}^{n}\right)$. If $u_{k} \xrightarrow{D} 0$, then modulo a subsequence, $\lim _{k \rightarrow \infty}\left\|u_{k}\right\|_{L^{p}\left(\mathbb{H}^{n}\right)}=0$, for all $p \geq 1$.

For the proof we need the following Sobolev embedding theorem [18]:
Theorem 5.7. Let Ω be a bounded open set of \mathbb{H}^{n}. Then $S_{1}^{2}(\Omega)$ is compactly embedded in L^{p}, for $1 \leq p<N^{*}$.

We need, also the following lemma, which is an adapted version of Lemma 1.1 in [10]:
Lemma 5.8. Let $\left(u_{k}\right)_{k \in \mathbb{N}}$ be a bounded sequence in $S_{1}^{2}\left(\mathbb{H}^{n}\right)$, such that, for some $R>0$

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \sup _{y \in \mathbb{H}^{n}} \int_{B(y, R)} u_{k}^{2} d \xi=0 \tag{5.1}
\end{equation*}
$$

Then $u_{k} \underset{k \rightarrow \infty}{ } 0$ in $L^{s}\left(\mathbb{H}^{n}\right)$, for $2<s<N^{*}$.
Proof of Lemma 5.6. Note that $u_{k} \stackrel{D}{ } 0 \Longrightarrow \forall g \in D: g u_{k} \rightharpoonup 0$.
We will give the proof in two steps, the first step deal with the case $1 \leq p<N^{*}$, and the second deal with the case $p \geq N^{*}$:
Let $1 \leq p<N^{*}, \alpha \in \mathbb{H}^{n}, g=g_{1,-\alpha}$, and $B=B(\xi, R)$ be a ball of center ξ and radius R.
According to the Theorem 5.7, we obtain:

$$
\begin{equation*}
\left\|g_{1,-\alpha}^{1} u_{k}\right\|_{L^{p}(B)}^{p} \leq C\left\|g_{1,-\alpha}^{1} u_{k}\right\|_{S_{1}^{2}(B)}^{2}\left\|g_{1,-\alpha}^{1} u_{k}\right\|_{L^{p}(B)}^{p-2} \tag{5.2}
\end{equation*}
$$

Let $\{B=B(\xi, R), \xi \in Z\}$ be a finite cover for \mathbb{H}^{n}. So, by summing inequalities (5.2) over $\xi \in Z$, we obtain:

$$
\left\|u_{k}\right\|_{L^{p}\left(\mathbb{H}^{n}\right)}^{p} \leq C\left\|u_{k}\right\|_{S_{1}^{2}\left(\mathbb{H}^{n}\right)}^{2} \sup _{\xi \in Z}\left\|g_{1,-\alpha}^{1} u_{k}\right\|_{L^{p}(B(\xi, R))}^{p-2}
$$

By the compactness of the embedding of $\stackrel{\circ}{S_{1}^{2}}(B)$ into $L^{p}(B)$, it follows that, modulo a subsequence, $g_{1,-\alpha}^{1} u_{k} \xrightarrow[k \rightarrow \infty]{ } 0$ in $L^{p}(B)$.
Hence, $\left\|u_{k}\right\|_{L^{p}\left(\mathbb{H}^{n}\right)} \underset{k \rightarrow \infty}{ } 0$ for $1 \leq p<N^{*}$.

Let us now deal with the case $p \geq N^{*}$.

Let $g=g_{\lambda_{k}^{-1}, 0}$, where $\lambda_{k} \xrightarrow[k \rightarrow+\infty]{ }+\infty$ is chosen such that

$$
\int_{\left|u_{k}\right|>\lambda_{k}^{\frac{2 n+2}{p}}}\left|u_{k}\right|^{p} \longrightarrow 0
$$

and let $w_{k}(\xi)=g_{\lambda_{k}^{-1}, 0}^{2} u_{k}(\xi)=\lambda_{k}^{-\frac{2 n+2}{p}} u_{k}\left(\delta_{\lambda_{k}^{-1}} \xi\right)$, i.e $u_{k}(\xi)=\lambda_{k}^{\frac{2 n+2}{p}} w_{k}\left(\delta_{\lambda_{k}} \xi\right)$.
We have
$\int_{\left|u_{k}\right|<\lambda_{k}}{ }^{\frac{2 n+2}{p}}\left|u_{k}\right|^{p} d \xi=\int_{\left|w_{k}\right|<1}\left|w_{k}\right|^{p} d \xi \leq \int_{\mathbb{H}^{n}}\left|w_{k}(x)\right|^{s} d \xi$, where $2<s<N^{*} \leq p$.
Note that the hypothesis (5.1) is satisfied if we take $g=g_{1, y}$. So, according to Lemma 5.8, $\int_{\mathbb{H}^{n}}\left|w_{k}(x)\right|^{s} d \xi \underset{k \rightarrow \infty}{ } 0$.
Hence $\left\|u_{k}\right\|_{L^{p}\left(\mathbb{H}^{n}\right)}^{\int_{k \rightarrow \infty}} 0$ for $p \geq N^{*}$.

5.3 Proof of the main result

Proof of Theorem 1.3. To be able to use the linking geometry stated in Proposition 3.3 and Proposition 3.4, we shall work on a bounded domain Ω of \mathbb{H}^{n}. Note that $E^{1}=\stackrel{\circ}{S_{1}^{2}}$.
By Theorem 3.2, we obtain a critical sequence $\left(z_{k}\right)$ on Ω. Sinc $\stackrel{\circ}{S_{1}^{2}}(\Omega) \subset \stackrel{\circ}{S_{1}^{2}}\left(\mathbb{H}^{n}\right)$ we may consider $\left(z_{k}\right) \subset \stackrel{\circ}{S}_{1}^{2}\left(\mathbb{H}^{n}\right)$. Since J is invariant under the action of $g_{\lambda, \alpha}$, we conclude that the sequence $\left(g_{\lambda, \alpha} z_{k}\right)$, that we denote again by $\left(z_{k}\right)$, is a critical sequence on \mathbb{H}^{n}, and according to Proposition 3.5 , it is bounded.
By Theorem 5.5, there exist $w^{(1)}, w^{(2)}, \cdots \in E$, and $\left(\alpha_{k}^{(1)}, \lambda_{k}^{(1)}\right)$, $\left(\alpha_{k}^{(2)}, \lambda_{k}^{(2)}\right) \cdots \in \mathbb{H}^{n} \times \mathbb{R}_{*}^{+}$, such that

$$
z_{k}-\sum_{n} g_{k}^{(n)} w^{(n)} \xrightarrow{D} 0,
$$

where $g_{k}^{(n)}=g_{\lambda_{k}^{(n)}, \alpha_{k}^{(n)}}$.
$\left(z_{k}\right)$ does not converge weakly with concentration to 0 . In fact, if we suppose that $z_{k} \stackrel{D}{\rightharpoonup} 0$, we will have by Lemma $5.6, \lim _{k \rightarrow \infty}\left\|z_{k}\right\|_{L^{p}\left(\mathbb{H}^{n}\right) \times L^{q}\left(\mathbb{H}^{n}\right)}=0$ (modulo a subsequence), which shows that $J\left(z_{k}\right) \xrightarrow{k \rightarrow \infty}$. Contradiction. Then there exists a $w^{\left(n_{0}\right)} \neq 0$.
On the other hand, for some $g_{k} \in D$, we have

$$
g_{k} z_{k} \rightharpoonup w^{\left(n_{0}\right)}
$$

Then,

$$
J^{\prime}\left(g_{k} z_{k}\right) \rightharpoonup J^{\prime}\left(w^{\left(n_{0}\right)}\right)
$$

However, $J^{\prime}\left(z_{k}\right) \xrightarrow[k \rightarrow \infty]{ } 0 \Longrightarrow J^{\prime}\left(g_{k} z_{k}\right) \xrightarrow[k \rightarrow \infty]{ } 0$. Then, $J^{\prime}\left(w^{\left(n_{0}\right)}\right)=0$.

References

[1] G.Citti, F.Uguzzoni. Critical semilinear equations on the Heisenberg group: The effect of the topology of the domain. Nonlinear Anal. Ser A: Theory Methods 46(3) (2001): 399-417.
[2] G.Citti. Semilinear Dirichlet problem involving critical exponent for the Kohn Laplacian. Ann. Mat. pura. appl. 169, (1995) : 375-392.
[3] D.G. De Figueiredo, P.L.Felmer. On superquadratic elliptic systems. Trans. Amer. Math. Soc., 343 (1), May 1994 :99-116.
[4] P.L.Felmer. Periodic solutions of superquadratic Hamiltonian systems. J.Differential Equations. 102, (1993): 188-207.
[5] G.B.Folland, E.M.Stein. Estimates for the $\bar{\partial}_{b}$ complex and analysis on the Heisenberg group. Comm. Pure. Apll. Math. 27, (1974): 429-522.
[6] E.Lanconelli, F.Uguzzoni. Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group. Bollettino U.M.I. 8 (1-B), (1998): 139-168.
[7] T. Kato. Perturbation theory of linear operators. Springer-Verlag Berlin Heidelberg 1995
[8] E.Lanconelli. Critical semilinear equations on the Heisenberg group. Annali. Univ. Ferrara, Special issue in memory of L.Cattabriga. 45, (1999): 187-195.
[9] P.L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case. part 1. Ann. Inst. H. Poincaré, 1 (2), (1984) :109-145 .
[10] P.L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case. part 2. Ann. Inst. H. Poincaré, 1 (4), (1984) :223-283.
[11] P.L. Lions. The concentration-compactness principle in the calculus of variations. The limit case, part 1, Rev. Mat. Iberoam, 1 (1),(1985):145-201.
[12] S. MAAD. Critical point theory with applications to semilinear problems without compactness. Phd Thesis, Uppsala University 2002

Nasreddine Megrez

[13] N. Megrez, On a Critical Hamiltonian System on \mathbb{R}^{N}. Monog. del Sem. Mat. Garcia de Galdeano, 27 (2003), 421-427
[14] P.H. Rabinowitz. Minimax methods in critical point theory with applications to differential equations, volume Math 65 of CBMS Regional Conference Series. Amer. Math. Soc., 1986.
[15] I.Schindler, K.Tintarev. Abstract concentration compactness and elliptic equations on unbounded domains. Prog. Nonlin. Diff. Equ. App., 43, (1998): 369-380.
[16] I.Schindler, K.Tintarev. An abstract version of the concentration compactness principle. Revista Mathematica Complutense, 15 (2), (2002) pp. 417-436.
[17] M.Schechter. Linking Methods in Critical Point Theory. Birkhäuser, 1999.
[18] E.M.Stein. Harmonic analysis. Real variable methods, orthogonality, and oscillatory integrals. Princeton University Press. Princeton, New Jersey. 1993.
[19] S.Thangavelu. Harmonic analysis on the Heisenberg group. Birkhäuser. 1998.
[20] K.Tintarev. Semilinear elliptic problems on unbounded subsets of the Heisenberg group. Elec. J. Diff. Equ. 18, (2001): 1-8.
[21] F. Uguzzoni. A non-existence theorem for a semilinear Dirichlet problem involving critical exponent on halfspaces of the Heisenberg group. Nonlinear Diff. Equ. Appl. 6, (1999): 191-206.
[22] M.Willem. Minimax Theorem. Birkhäuser, 1996.

[^0]: ${ }^{1} A \ominus B:=A \bigcap B^{\perp}$ is the orthogonal complement of B in A.
 ${ }^{2}|A|=\sum \alpha_{k}\left\langle., \varphi_{k}\right\rangle \varphi_{k}$, where $\left\{\varphi_{k}\right\}$ is a set of eigenfunctions of A defining an orthonormal basis of H, and $\alpha_{1} \geq \alpha_{2} \geq \cdots>0$ satisfie $A^{*} A \varphi_{k}=\alpha_{k}^{2} \varphi_{k}, k=1,2 \ldots$

