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Abstract

We give two existence results for the problem

—Agnu = qlv]? %vin Q
—Agnv = plulP?uin Q
li =
(P): |§\£>n(xJU(E) 0
lim v(§) =0
o v(€)
Uy = Vjpg = 0 (if Q # H")

where Apn is the Heisenberg Laplacian and H" is the Heisenberg group.
The first existence result is established when €2 is a strongly asymptoticaly

contractive domain, and p, ¢ < 22%L are superlinear-subcritical, that is

n—1
1 1 n
1>-+->
p q

1 The second existence result is established when
n

n
n+1"

1 1
Q =H", and (p, q) is critical, that is = + = =
p q

Subject Classification: 22E30.

Keywords: Heisenberg Laplacian, Linking, Abstract Concentration Com-
pactness.

115



Nasreddine Megrez

1 Introduction and main result

We denote by H" the vector space R+, of vectors £ := (21, ..., T, Y1, -y Un, )= (2,9, 1),

endowed with the group action:

§o&=(z+z0,y+yo,t+to+2) (2o, — yizo,))-

i=1
H™ is a Lie group, called the Heisenberg group, and the corresponding Lie
algebra of left invariant vector fields, is generated by:

0 0
Xizi 27577.:]-7"'7 ’
%xi—l— ygt A n
Y= — 20— ,i=1,...n,
8yi ot
)
ot

We have [X;, Y| = —4T9; ;, [X;, Xi] = [Y;, Vi) = [X;,T] = [Y;,T] = 0.
The Heisenberg Laplacian, (also called the subelliptic Laplacian, or the Kohn
Laplacian), is defined as:

n

AHn, = Z(X?_i_yf)
=1
n 82 52 2 (92 32
N 4yi — 4z A(2? + %) =—
— Ox;? Yo T Wiana  Yiagar T (@7 +9)) 50
= div(AVu)

where A is the following (2n + 1) x (2n + 1) matrix:
I, O 2yt
0 1, —2zt
2y —2x 4(2® +y?)
Observe that A is a positive semi definite matrix, with det(A) = 0 for all
(z,y,t) € H", and rank(A) = 2n.
A natural group of dilations on H", is given by:

Sx(€) := (Ax, My, M%), A > 0.

The Jacobian determinant of §y is AV, where N = 2n + 2 is the homogeneous
dimension_of H"™.

N* =
N -2

Let Q be an open set of H". We denote by S7 () the Folland-Stein Sobolev

space, defined as the closure of C5°(£2), under the norm:

ullZe = /2 Vareuf?de.

, is the critical Sobolev exponent for Ay .
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Note that S? (H") = SZ(H").

Definition 1.1. A domain 2 C H" is said to be strongly asymptotically con-
tractive (S.A.C for simplicity), if 2 # H" and for any sequence 7; € H™ such

that |n;| — oo, there exists a subsequence 7;, such that either

[SSIING)
U ﬂ (773'1 ° Q)
n=1[l=n

orl

i) o,

ii) Jng € H" such that for any R > 0 there exist an open set Mr CC 190 Q, a
closed set Z of measure zero and an integer g > 0 such that

(nj, o) NBr(0) C MrpUZ, for any ! > lg.
Let Q C H™ be unbounded, and p, ¢ two positives real.
In this paper, we give two existence results for the problem

—Agnu = qlv|97%v in Q
—Apgnv = plulP~2u in Q

(P): |§|hi>noo w8 =0
|€|lim v(&) =0

Ulpa = V0pq = 0 (if Q# Hn)

according to the following cases:

2N
Case I: () is strongly asymptoticaly contractive domain, and p, ¢ < N1
and are superlinear-subcritical, that is
1 1_N-2 n

1>-+->
p+q N n+1

(1.1)

Case II: Q@ =H", and (p, q) is critical, that is

1 1 N-2 n

P q N  n+1

(1.2)

Let H be the Banach space (S7(H") N LP(H")) x (ST(H™) N L9(H")), equipped
with the norm:
1w, o)l = Nlullszmy + lvllszn)-

A weak solution of the problem (P) is a critical point of the functional J defined
by:
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J(u,v) = / Vinu. Vygnvdé —/ [JulP + |v|9] d¢ (1.3)
Q Q
where Vygn := (X1,..., X, Y1, ..., Y)

The quadratic part of J is well defined on S? () x S? (£2), and the second part

N+2
is well defined if p, ¢ < N + 5 However, for subcritical (p,q) ( (1.1) ), at less

one of the variables p, ¢ is greater then % For this matter, we will use in

case I, fractional Sobolev spaces
Eey=D((-Ag)?) x D ((-AHn)%) s t>0, s+t=2

allowing us to take p > %, if ¢ < %, and to use some compact sobolev

embedings. In case II, J is well defined and of class C' on H, and in vertue of

abstract concentration compactness we dont need compact embedings.

Our main results are:
Theorem 1.2. In the case I, the problem (P) has a weak solution in Eg,

Theorem 1.3. In the case II, the problem (P) has a weak solution in H.

2 Functional analytic frame work

In this section, we expose an abstract analytic frame work.

2.1 Spectral families

For completion, we recall results on spectral families (see [7]). Let H be a
Hilbert space endowed with a scalar product < .,. > and its associated norm
||.]l- Suppose there is a nondecreasing family {M ()\), A € R} of closed subspaces
of H, such that (| M(\) = {0}, and | J M()) = H.

AER AER
For any fixed A, we have

MMA=0):= ) M(N)c M) c MA+0):= [ M)
A< AP>A

Definition 2.1. We say that the family {M(\)} is right continuous at A if
M(A+0) = M(X), left continuous if M (A —0) = M (), and continuous if it is
both right and left continuous.

Definition 2.2. The family { E(\)} of orthogonal projections on M (\), is called
spectral family, and we have:
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i) {E()\)} is nondecreasing: E(X\) < E(\’) for X < \”.

ii) )\lim E(\) =0,and lim FE(\) =id.

A—+oco

iii) {E(\)} is strongly right (resp. left) continuous if and only if {M (M)} is

right (resp. left) continuous.

iv) For any semiclosed interval I =]\, \’] C R, we define E(I) as the projec-
tion on the subspace M (I) = M(\")© M(XN') !, and we have

E(I)=EW\') - E(\)

Definition 2.3. {E()\)} is said to be bounded from below if E(u) = 0 for some
finite p, that is, {E(A)} =0 for A < p. The least upper bound of such p is the
lower bound of {E(A)}.

{E(\)} is said to be bounded from above if E(u) = id for some finite p, that is,
{E(M\)} = id for A > u. The greatest lower bound of such y is the upper bound

of {E(\)}.

To any spectral family {E())}, we associate a selfadjoint operator T' defined by

T = /+OO ME(N) (2.1)
on too
D(T) = {u cH: ||Tul* = /_ Nd(BE(Nu,u) < oo} (2.2)

Theorem 2.4. (The spectral Theorem). Every selfadjoint operator T ad-
mits an expression (2.1) by means of a spectral family {E(\)} which is uniquely

determined by

EO) =1- % [T + UMW (2.3)

where U(N) is the partially isometric operator that appears in the polar decom-
position T — X =U\)|T = A|, 2 of T — \.

We have the following properties:

+oo
(Tu,v) = / A (E(MNu,v) forue D(T), ve H (2.4)
(Tu,u) < Mul|? for u € E(A\)H (2.5)

'A© B := A B* is the orthogonal complement of B in A.
2|A| = Z ak (., ¢k) ¢k, where {(} is a set of eigenfunctions of A defining an orthonormal
basis of H, and a1 > ap > - -+ > 0 satisfie A*Apy = aZpy, k=1,2 ....
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Alull* < (Tu, u) < pllull? for u € E(u)H & E(\)H (2.6)

(Tu,u) = pllul)® for u € [E(n)H]" () D(T) (2.7)

2.2 A quadratic form on fractional Sobolev spaces

Suppose that T is semi bounded from below, that is, there exists a constant ¢§
such that
(Tu,u) > 6||ul|?, for u € D(T) (2.8)

For simplicity, we will take § = 1. Then E(A) = 0for A < 1, where {E()\), A € R}
denotes the spectral family associated with 7. Hence one can define T’ /2 as

+oo
T1/2 ;:/ M2AE(N),
1
on
400
o) = fuem: i = [ a0 < ).
1

For each positive real s, one can define T/ as

+oo
AS = Ts/2 — / )\S/QdE()\)’
1
on
“+oo
E®:=D(A®%) = {u € H: ||A%u|? = / Nd(E(MN)u,u) < oo} .
1
FE* is a Hilbert space, with the inner product
(u,v) ps = (A’u, A%v)
From (2.8), it follows that
|A%ul| > ||u]| for all u € E® (2.9)

For s, t > 0 with s +t = 2, we define the Hilbert space £ := E* x E*, with the
inner product (., )y = (, Y ps + (., ) gt -
Let B be the bilinear form defined on F x E by

Bl(u,0), ()] = (A%u, A") + (A%p, A')

Since B is symmetric and continuous, it induces a self adjoint bounded linear

operator L : F — FE such that

Blz,n] = (Lz,n)y, for z, n € E,
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and L is defined by
Lz=(A*AM, A_tAsu>E, for z = (u,v) € E. (2.10)
We consider the following eigenvalue problem
Lz = )\z (2.11)
Using (2.10), the problem ( 2.11) is equivalent to
A A = \u (2.12)

and
A" A% = M (2.13)

According to (2.9), A® and A' are isomorphisms, and then A\ cannot be zero.

Hence, injecting (2.12) in (2.13) we obtain
v =\,

which yields that A\=1 or A = —1.

The corresponding eigenspaces are
Et ={(u,A7"A%u): ue E*} for A\=1,

and
E™ ={(u,—A7"A%u) : ue E°} for A\ =—1.

and are orthogonal with respect to the bilinear form B, that is,
B(zt,z7)=0forall 2t € E*, 2~ € E™.

We also have E = Et @ E—.
We define the quadratic form @ associated with the bilinear form B, by

Qz) = %B[z,z] = (A%u, A'v), for z = (u,v) € E (2.14)

which yields for z = 2zt + 27, 2+ € Et, 2= € E~, that

Sl = Q") - Q) (215)
and that, there exists a constant ¢y > 0, such that
Q(2) = coll2II% for =z € EF (2.16)
and
Q(z) < —col|z||% for z € E~ (2.17)
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2.3 Rigorous variational formulation of the problem

We take T = —Apgn. In order to have the Poincaré type inequality (2.8), we
shall work on a bounded or a strongly asymptotically contractive domain of
Q c H".

Let H = L?(Q2), A® = (—=Ag»)? and E* = D((—Agn)3) .

The appropriate functional to be associated to problem (P) in case I is

J(u,v) := /QASu.Atv d¢ — /Q [Jul” + |v|] d& (2.18)

where s+t =2, s, t > 0 and

_ 2N _ 2N
P=NTos 1> N2

In case IT we take s =t = 1, and hence we regain the form in (1.3).

3 Minimax theorem and Plais-Smale sequence

In this section, we establish the linking geometry of J on bounded or strongly
asymptitically contractive domain of H", to give a Palais-Smale sequence by the

minimax principle used in [14] and [3].

Definition 3.1. Let S be a closed subset of a Banach space X, and Q) a
sub-manifold of X, with relative boundary 0Q.
We say that S and 0Q link if:

1. SNaQ = 0.
2. Vh € C°(X, X) such that hy,, = id, there holds h(Q) NS # 0.

Theorem 3.2. Let J: X — R be a C' functional. Consider a closed subset
S C X, and a sub-manifold Q C X, with relative boundary 0Q. Suppose:

1. S and 0Q link.

2. 36 > 0 such that
J(z) >dVz e S,

J(z) <0Vz € 9Q.
Let
I':={heCX,X)|h,, =id},
and

:= inf J(h > 6.
¢:= jnf sup (h(z)) =
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Then there exists a sequence (zx)ken C X, such that

J(z) —— ¢

k—oo 1
J(zx) —— 0. (3:1)
k—oo

1 1
We choose numbers o > 1, v > 1, such that — < B and — < v .
+v w+v

p b
The following propositions give the linking geometry of J. Their proofs are

similar to those in [3] and will be omitted.
Proposition 3.3. There exist p > 0, § > 0, such that if we define
S = {(p"u, p" o) | [(w,0) | = p, (u,v) € BT,

then

J(z) >6 Vz€S.
Proposition 3.4. There exist 0 > 0, M > 0, such that if we define
Q= {r(c" tuy, 0" vy) + (o w0 ) [0 < T <0, 0 < ||(u,v)|p< M,
and (u,v) € E~}, where 2t = (uy,vy) € EY, with uy some fized eigenvector
of —Apgn, then

J(z) <0 Vz € 9Q,

where 0Q is the boundary of Q, relative to the subspace
{r(c"  uy, 0 Tog) + (0" w0 ) [T ER, (u,v) €ET}.

Proposition 3.5. Let Q C H™ be any bounded or unbounded domain of H",
and let (zi, = (ug,vk))ken C E be a Palais-Smale sequence of J at level ¢, that
18,

J(zx) — ¢, and J'(z,) —— 0. (3.2)
k—oo k—oo
Then (zx)ken is bounded.

Proof. Let (zr = (uk, vk))ren be a sequence of E satisfying (3.2). Then, there
erists a sequence € P 0, such that
— 00

[T (zk)n] < exlinlle ¥n € E. (3.3)

1 1
Taking ny, = P (uk, vk>, and using (3.2), we obtain
p+q\p q

Pq
el > ) = 7 Gom = (2 1) [ur s podras. (3)
pP+q Q
Hence, there exists a positive constant C such that

/ ukl” + |vg|?dE < C (1 + |2k 2) = C (1 + [Jux]

Bs + [Jvkllge) - (3.5)

123



Nasreddine Megrez

By considering n = (¢,0) with ¢ € E*, we obtain from (3.3)

IA

/ ASaS-Akadf‘ p / lug [P~ p|dE + x| @] =
Q Q

IN

C (Jlunlly oy +1) o] &
Taking ¢ = vy, we obtain
lowlle < € (llulfoley +1)-

Similar reasoning yields that

sz < € (JloslFrgy +1)-

Replacing (3.8) and (3.9) into (3.5), we obtain

p—1
P

g=1
ge Flvelge + 1) :

gl + llowll e < € (uuk

(3.10)

Since the exponents in the right-hand side of (3.10) are less then 1, the sequence

21 18 bounded in E.
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4 Existence in the subcritical case on a strongly

asymptotically contractive domain

Proof of Theorem 1.2.

By Theorem 3.2, we obtain a critical sequence (z) on € satisfying equation (3.1).
According to Proposition 3.5, the sequence is bounded, therefore a relabeled
subsequence converges weakly to a limit z. Sinc J' is continuous in the weak
topology J'(z) = 0.

We claim that z # 0. Suppose it were, then by compact Sobolev embeddings,

/ﬂ [unl? + foel?] de — 0. (4.1)

We also have J'(zy )z, — 0 since zj, is bounded, but combining this with equation
(4.1), one obtains that ||zx||> — 0 contradicting (3.1) since ¢ > 0.
O

5 Existence in the critical case on H"

5.1 Abstract concentration compactness

In this section, we recall the abstract concentration compactness due to I.SCHINDLER,
and K.TINTAREV [16], and we give a version adapted to our problem.
Let H be a separable Hilbert space, and let D be a bounded multiplicative

group of bounded linear operators on H.

Definition 5.1. We say that D is a set of dislocations if it satisfies the following

conditions:

P1) Let g € D. If g A 0, and if up — 0, then there exists a subsequence
such that gpur — 0.

P2) If there exists a u € H \ {0} such that gyu — 0, then g — 0.
P3) If g, € D, and u, — 0, then gjgrur — 0.

Definition 5.2. Let u, uxy € H. We say that u; converges to u weakly with

. D .
concentration, and we note ux — u, if Vo € H*

lim sup (g(us, — ), ¢) = 0.
k—o0 geD

If D is a compact group, concentrated weak convergence is equivalent to weak

convergence.
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Theorem 5.3. Let (ug)ren C H be a bounded sequence, and let D be a set of
dislocations. Then there exist (w™),en C H, (g,(cn))neN C D, k €N, such that

for a renamed subsequence,

gV =id, g™ g™ =0 forn#m,

w™ = — lilgng,g")iluk,

n n) D
u;g—X:g,(C >w( ) 20,
neN

5.2 Concretisation of the abstract concentration compact-
ness on K

Let D be the infinite multiplicative group of bounded linear operators
defined on E by

2n+2 2n+2

Pa(©.v©) = (M ulae 592 v(a o))

= (Ghathgrav)

where a € R?™*1 and ) is a positive real.
Lemma 5.4. D is a set of dislocations.

Proof. Let z := (u,v) € H. Properties P1), P2) are clearly satisfied since we
observe that

Ik = Grp,a, — 0= ap —> 00, or A\ — 0, or A\, — oo.

Observe that gi = g,zl, which yields P3).

The following theorem is a corollary of Theorem 5.3. See [15].

Theorem 5.5. Let (2, = (ug,vr))r be a bounded sequence in E. Then for a

(2))

renamed subsequence, there exist w™™, w® ... € E, and (04,(61)7 )\,(:)), (a,(f), AL

... € H™ x RY, such that

* 9

w™ =w— lim g 1 (n) Zks
k—o0 /\(n)’_ak
k

and for r #=m

/\g)/)\;m) — 00, or )\,(:)/)\,(cm)—> 0, or \a,(f) - a,&m)| — 00.
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The series E gy (m a(n)w(") converges absolutely in E, and:
k Tk
n

D
2k — E gkgn) ain)w(") = 0.
~ : :

Lemma 5.6. Let (ug)x be a bounded sequence in S7(H™) N LP(H").

If uyg, 2 0, then modulo a subsequence, klim |lurll Lrny = 0, for all p > 1.
For the proof we need the following Sobolev embedding theorem [18]:

Theorem 5.7. Let 2 be a bounded open set of H". Then S? () is compactly
embedded in LP, for 1 <p < N*.

We need, also the following lemma, which is an adapted version of Lemma 1.1 in [10]:

Lemma 5.8. Let (ug)ren be a bounded sequence in S?(H™), such that,
for some R >0

liminf sup / urdé =0 (5.1)
koo yern JB(y.R)

Then uy, = 0 in L5(H"), for2 < s < N*.

Proof of Lemma 5.6. Note that u = 0= Vg e D:gur—0.

We will give the proof in two steps, the first step deal with the case 1 < p < N*,
and the second deal with the case p > N*:

Let 1 <p< N*,a € H", g = g1 _a, and B = B(&, R) be a ball of center £ and
radius R.

According to the Theorem 5.7, we obtain:
—2
Hgi—aul«”ip(g) < C”gi—aukHZ"Z(B)”g%,—aukHiP(B) (5.2)
1

Let {B = B(§, R), £ € Z} be a finite cover for H". So, by summing inequalities
(5.2) over £ € Z, we obtain:

-2
||uk||1£p(Hn) < C”ukHéf(Hn) ggg Hgifauk||12p(3(§,m)

By the compactness of the embedding of S? (B) into LP(B), it follows that,
modulo a subsequence, gi _,u —_—0in LP(B).

Hence, ||ug||zr ) — 0forl1<p< N*
— 00

Let us now deal with the case p > N*.
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Let g = Irt 00 where Ay P +00 is chosen such that
: o

/ sz [ug|” — 0;
\uk|>)\k P
_ 2n+42 2n42
and let wg(§) = gizl’ouk(g) =\ 7 Uk((s)\glf), e up(&) =N, 7 wi(dx6).
We have
/ anso |ug|Pd€ = \wk|pd£§/ |wg (x)]°d€, where 2 < s < N* < p.
| : Hn

ur|<A, |wi,| <1

Note that the hypothesis (5.1) is satisfied if we take g = ¢1,4. So, according to

Lemma 5.8, / |wy, (z)|*d¢ — 0.
H~ k—o0
Hence [|ug|| v an) R 0 for p > N*.

5.3 Proof of the main result

Proof of Theorem 1.3. To be able to use the linking geometry stated in
Proposition 3.3 and Proposition 3.4, we shall work on a bounded domain €2 of

H". Note that E! =5%.
By Theorem 3.2, we obtain a critical sequence (2;,) on §2. Sinc S? (2) CS? (H")

we may consider (zj) CSc')f (H™). Since J is invariant under the action of gy o, we
conclude that the sequence (gx,a2k), that we denote again by (zy), is a critical
sequence on H", and according to Proposition 3.5, it is bounded.
By Theorem 5.5, there exist w"), w®, ... € E, and (oz,(cl), /\561))7
(@A) ... e H" x Rf, such that
o Y gfu R,
n

(n) _
where g, = UNQINOE

(2x) does not converge weakly with concentration to 0. In fact, if we suppose
that 2y Lt 0, we will have by Lemma, 5.6, klim 2%l Le 57y x Lamy = O (modulo a
subsequence), which shows that J(z) —>—>00.O Contradiction. Then there exists
a w™) £ 0.

On the other hand, for some g € D, we have

grae — w0,

Then,
I (grz) = J' (w™))

However, J'(z) = 0= J'(grzx) o 0. Then, J'(w(™)) = 0.
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