ON THE CENTER OF FINITELY GENERATED LOCALLY (-1,1) RINGS

K.Jayalakshmi

Assistant Professor in Mathematics, J.N.T.University Anantapur College of Engg. J.N.T.University Anantapur. Anantapur.(A.P) INDIA.
jayalakshmikaramsi@gmail.com

C.Manjula

Department of Mathematics,
J.N.T.University Anantapur College of Engg.
J.N.T.University Anantapur.

Anantapur.(A.P) INDIA.
man7ju@gmail.com

Abstract

In this paper we show that a simple finitely generated locally (-1,1) ring must be an associative field.

2010 MATHEMATICS SUBJECT CLASSIFICATION : 17 D 20

KEY WORDS : Locally (-1,1) ring, nilpotent ideal, simple ring.

INTRODUCTION : Hentzel and smith [2] studied simple locally ($-1,1$) nil rings and show that a simple locally ($-1,1$) nil ring of char. $\neq 2,3$ must be associative. Hentzel [2] studied properties of nil potent ideals in semi simple ($-1,1$) rings which are nil. We concentrate mainly on [2] and prove that a simple finitely generated locally $(1,1)$ ring must be an associative field. A ring is a
$(-1,1)$ ring it is satiesfies the conditions.
$0 \equiv A(x, y, z)=(x, y, z)+(y, z, x)+(z, x, y)$.
$0 \equiv B(x, y, z)=(x, y, z)+(x, z, y)$.
A ring is locally $(-1,1)$ if the subring generated by any two of its elements is $(-1,1)$. For example, both $(-1,1)$ rings and alternative rings are locally (-1,1). In a nonassociative ring R, we define $(x, y, z)=(x y) z-x(y z)$ and $[x, y]=x y-y x$ for all x, y $\in R$. A ring R is said to be simple if whenever A is an ideal of R then either $A=R$ or $A=0$. By the center Z of R we mean the set of all elements z in N such that $[z, R]=0$ i.e., $Z=\{z \in R /[z, R]=0\}$. Throughout this paper Z represents set of all elements which commutes with all elements in the ring and z will always means and elements taken from Z. We use the following identities which hold in locally $(-1,1)$ char. $\neq 2,3$, which are proved by Hentzel [2].
$0 \equiv C(x, y, z)=(x, y, y z)-(x, y, z) y$.
$0 \equiv D(x, y, z, w)=(x, y z, w)+(x, w z, y)-(x, z, w) y-(x, z, y) w$.
$0 \equiv E(x, y, z)=\left(x, y^{2}, z\right)-(x, y, y z+z y)$.
$0 \equiv F\left(x, y, y^{\prime}, z\right)=\left(x, y y^{\prime}+y^{\prime} y, z\right)-\left(x, y, y^{\prime} z+z y^{\prime}\right)-\left(x, y^{\prime}, y z+z y\right)$.
$0 \equiv G(x, y, z)=[x, y z]+[y, z x]+[z, x y]$.

K.Jayalakshmi \& C.Manjula

$$
\begin{align*}
& 0 \equiv H(x, y, z)=[x,[y, z]]+[y,[z, x]]+[z,[x, y]] . \tag{8}\\
& 0 \equiv I(x, y, z, w)=(x y, z, w)-(x, y z, w)+(x, y, z w)-x(y, z, w)-(x, y, z) w . \tag{9}\\
& 0 \equiv J(x, y, z)=[x,(y, z, x)]+[x,(z, y, x)] . \tag{10}\\
& 0 \equiv K(x, y, z)=[x,(y, y, z)]+[z,(y, y, x)] . \tag{11}\\
& 0 \equiv L(x, y, z)=[x,(y, y, z)]-3[y,(x, z, y)] . \tag{12}\\
& 0 \equiv M(x, y, z)=[x y, z]-x[y, z]-[x, z] y-2(x, y, z)-(z, x, y) . \tag{13}\\
& 0 \equiv N(x, y, z, w)=(x y, z, w)+(x, y,[z, w])-x(y, z, w)+(x, z, w) y . \tag{14}\\
& 0 \equiv O(x, y, z, w)=([x, y], z, w)-([z, w], x, y)-[x,(y, z, w)]+[y,(x, z, w)] . \tag{15}\\
& 0 \equiv P(x, y, z, w)=[x,(y, z, w)]-[y,(z, w, x)]+[z,(w, x, y)]-[w,(x, y, z)] . \tag{16}\\
& 0 \equiv Q(x, y, u)=(x, y, u)+(y, x, u) . \tag{17}\\
& 0 \equiv R(u, x, y)=(u, x, y)-2(y, x, u) . \tag{18}\\
& 0 \equiv \mathrm{~S}(x, y, u)=3(x, y, u)-[x, y] u+[x, y u] . \tag{19}
\end{align*}
$$

$[[x, y], z]+[[y, z], x]+[[z, x], y]=S(x, y, z)+S(y, z, x)$ is called jacobi identity.
If S is a subset of a locally $(-1,1)$ ring R, by S^{c} we mean $\left\{x / 2^{i} 3^{i} x \in S\right.$ for some $\left.0 \leq i, j\right\}$. It is easily shown $S^{c} \cdot T^{c} \subseteq$ $(S T)^{c}$ and $\left(S^{c}\right)^{c}=S^{c}$, we call a set S fat if $S^{c}=S$.

If R is a locally ($-1,1$) ring and $a \in R$, define $T_{a}: R \rightarrow R$ by $r T_{a}=r a$ (right multiplication by a). T_{a} is an element of the associative ring of all endomorphism on the abelian group $(R,+)$. Let $T_{R}=$ the subring of endomorphism on $(R,+)$ generated by $\left\{T_{a} \backslash a \in R\right\}$. Let $I=(R, R, R)^{c} . I$ is an ideal of R and $I \subseteq\{(x, x, R) \backslash x \in R\}^{c}$ Lemma (4). Let $T_{1}=$ the ideal of T_{R} generated by $\left\{T_{a} \backslash a \in I\right\}$. We shall now prove the following theorem by a succession of fourteen lemmas.

THEOREM 1: Let R be a finitely generated locally ($-1,1$) ring, then T_{i} is a nilpotent ideal of T_{R}.
(i) $[R, R] \subseteq Z$.
(ii) $(Z, Z, R)=(Z, R, Z)=(R, Z, Z)=0$.
(iii) $(x, x, Z)=0$.
(iv) $(x, y, z) z^{\prime}=\left(x, z^{\prime} y, z\right)$.
(v) Z is a commutative associative subring of R.
(vi) $(x, x, y) z=(x, x, z y)$.

PROOF: (i) By the Jacobi identity,
$[[R, R], R]+[[R, R], R]+[R, R], R]=0$
$[[R, R], R]=0$.
Thus $[R, R] \subseteq Z$.
(ii) follows from $0 \equiv Q$ and $0 \equiv R$.
(iii) follows from $0 \equiv Q$.
(iv) follows from $0=N\left(z^{\prime}, y, x, z\right)-Q\left(x, z^{\prime} y, z\right)+z^{\prime} \cdot Q(y, x, z)$ and(ii).
(v) follows from (ii) and $0 \equiv M$.
(vi) follows from $0=2 D(x, z, y, x)+R(z, x y, x)-R(z, y, x) \cdot x+C(z, x, y)-B(z, x, x y)+B(z, x, y) \cdot x+2 B(x, x, y) \cdot z-2 B(z, z y, x)$.

The proof of Theorem (1) begins.
LEMMA 1: (a) $(Z, R, R)+(R, R, Z) \subseteq Z$.
(b) $(Z, R,[R, R])=([R, R], R, Z)=0$.

ON THE CENTER OF FINITELY GENERATED LOCALLY (-1,1) RINGS

PROOF : From [2, Lemma 5] we have $(Z, R, R) \subseteq Z$. Since $(x, y, z)=(z, y, x)-R(z, y, x)$, by char. $\neq 2,(R, R, Z) \subseteq Z$. To prove (b), from [2, Corollary 1] we have $(Z, R,[R, R])=0$. To second part is from $([x, y], r, z)=(z, r,[x, y])-R(z, r,[x, y])$.

LEMMA 2: $A \subseteq\left\{x \backslash 3^{i} x \in\right.$ additive subgroup generated by the set of all (y, y, r) for all $\left.y, r \in R\right\}$.
PROOF : Let $M=\left\{x \backslash 3^{i} x \in\right.$ additive subgroup generated by the set of all (y, y, r) for all $\left.y, r \in R\right\} .(R, R, R) \subseteq M$ by [2, Lemma 2]. To show M is an ideal, by $0 \equiv I$ it is only necessary to show $x(y, y, r) \in M$ for all x, y, r. This follows from $N(x, y, y, r)-C(x, y, r)$.

LEMMA 3: Let $W=(R, R, Z)$ then $\left(R, R, W^{c}\right) \subseteq W^{i}$.
PROOF : This is proved by induction. Since $W \subseteq Z$ by Lemma $1,\left(R, R, W^{1}\right) \subseteq W^{1}$, and the result is true for $i=1$. We now show $\left(R, R, W^{r}\right) \subseteq W^{r}$ and $\left(R, R, W^{s}\right) \subseteq W^{s}$ implies $\left(R, R, W^{r+s}\right) \subseteq W^{r+s} .\left(R, R, W^{r} W^{s}\right) \subseteq\left(R, W^{r}, R W^{s}\right)+\left(R, W^{r}, W^{s}\right) R+$ $\left(R, R, W^{s}\right) W^{r}$ by $0 \equiv D \subseteq\left(R, W^{r}, R\right) W^{s}+0+\left(R, R, W^{s}\right) W^{r}$ by (iv) and (ii) $\subseteq W^{r+s}$ by induction. This finishes the poof of Lemma 3. If $S \subseteq R$, let $(S) \#=$ ideal of R generated by S.

LEMMA 4: $\left(W^{i}\right) \#=W^{i}+W^{i} R$.
PROOF : It is sufficient to show that $W^{i}+W^{i} R$ is an ideal of $R .\left(W^{i}+W^{i} R\right) R \subseteq W^{i} R+W^{i} \cdot R^{2}-\left(W^{i}, R, R\right) \subseteq W^{i} R+$ $\left(R, R, W^{i}\right)$ by $0 \equiv R \subseteq W^{i}+W^{i} R . R\left(W^{i}+W^{i} R\right) \subseteq R W^{i}+R\left(R W^{i}\right) \subseteq R W^{i}+\left(R, R, W^{i}\right) \subseteq W^{i}+W^{i} R$. Therefore $W^{i}+W^{i} R$ is an ideal of R.

LEMMA 5: $\left(W^{i}\right) \# \cdot\left(W^{j}\right) \# \subseteq\left(W^{i+j}\right) \#$.
PROOF : We do this proof in two parts. First $W^{i} \cdot\left(W^{j}\right) \#=W^{i}\left(W^{j}+W^{j} R\right) \subseteq W^{i+j}+W^{i+j} R$ by (ii). Second $W^{i} R \cdot\left(W^{j}\right) \# \subseteq$ $W^{i} \cdot R\left(W^{j}\right) \#+\left(W^{i},\left(W^{j}\right) \#, R\right) \subseteq W^{i}\left(W^{j}\right) \#+W^{i}\left(W^{j}\right) \# \cdot R \subseteq\left(W^{i+j}\right) \#$ by the first part. \downarrow

LEMMA 6: If R is generated by a set of n elements G, then $W^{n+1}=0$.
PROOF : We do this proof in three parts. First: $(Z, R, R) \subseteq \sum_{g \in G}(Z, g, R)$
$2(z, x y, r)=(z, x y+y x, r)+(z,[x, y], r)=(z, x y+y x, r)$ by (i) and (ii) $=(z, x, y r+r y)+(z, y, x r+r x)$ by $0 \equiv F=2(z, x, y r)+$ $2(z, y, x r)$ by (i) and (ii).
Second: $\quad(Z, a, R)(Z, a, R)=0$.
$(Z, a, R)(Z, a, R) \subseteq(Z,(Z, R) a, R)$ by (iv) $\subseteq(Z,(Z, a, a R), R)$ by $0 \equiv C=0$ by Lemma (1) and (ii).
Third: By $0 \equiv R, 2 W \subseteq(Z, R, R)$. Thus $2^{n+1} W^{n+1} \subseteq(Z, R, R)^{n+1}$. We will show $(Z, R, R)^{n+1}=0$.
$(Z, R, R)^{n+1} \subseteq \sum \prod_{i=1}^{n+1}\left(Z, x_{i}, R\right)$, where $\mathrm{x}_{\mathrm{i}} \in \mathrm{G}$ by the first part. In each product $\prod_{i=1}^{n+1}\left(Z, x_{i}, R\right)$ at least two of the x_{i} are identical as there are $n+1 x_{i}$'s taken from a set G containing n elements. By the second part $\prod_{i=1}^{n+1}\left(Z, x_{i}, R\right)=0$. We have shown $W^{n+1}=0$. Let $\left\langle W^{i}\right\rangle=\left(\left(W^{i}\right) \#\right)^{c}$. For each $I,\left\langle W^{i}\right\rangle$ is an ideal of R, and from Lemma (5) we have $\left\langle W^{j}\right\rangle \subseteq$ $\left\langle W^{i+j}\right\rangle$.

LEMMA 7: $I^{2} \subseteq\left\langle W^{1}\right\rangle$.
PROOF : This proof takes four steps: (7.1),(7.2),(7.3) and (7.4).
$\left(a, a, x^{2}\right)=(a, a x+x a, x)$ by $0 \equiv E=2(a, a, x) x+(a,[a, x], x)$ by $0 \equiv C \cdot 2(a, a, b c)=(a, a, b c+c b)+(a, a, b c+c b)$ by (i) and (iii). Combining these two statements gives use

K.Jayalakshmi \& C.Manjula

$2(a, a, b c)=2(a, a, b) c+2(a, a, c) b+(a,[a, b], c)+(a,[a, c], b)$.
We now show: $[R, I] \subseteq\langle W\rangle$.
$3 R([a, c], a, b) \in W$. By Lemma (2) we have $[R,(R, R, R)] \subseteq W$ and thus $[R, I] \subseteq W$.
$c \in I$ implies $(a, a, c) \in\langle W\rangle$
$(a, a, c)=[c, a] a-[c a, a]+M(c, a, a)+B(a, c, a) \in\langle W\rangle$.
Let $c \in I$. By (7.1) $2(a, a, b c)=2(a, a, b) c+2(a, a, c) b+(a,[a, b], c)+(a,[a, c], b) ;(a,[a, b], c)$ and $(a,[a, c], b)$ are in $\langle W\rangle$ by (7.3). The remaining term $2(a, a, b) c$ must also be in W. We have shown $(a, a, b) I \subseteq\langle W\rangle$ and thus $I^{2} \subseteq W$.

LEMMA 8: $\left(I, I, W^{i}\right) \subseteq\left\langle W^{i+1}\right\rangle$.
PROOF : The proof of Lemma (8) takes four steps.
$[(a, a, b), b z]=[(a, a, b) z, b]=[(a, a, z b), b]=-[(a, a, b), z b]$
By $0 \equiv G$, (vi) and $0 \equiv K$. Therefore $[(a, a, b), b z]=0$.
$((a, a, b), b, z)=0$.
$3((a, a, b), b, z)=[(a, a, b), b] z-[(a, a, b), b z]+\mathrm{S}((a, a, b), b, z)=0$ by $0 \equiv J$ and (8.1).
$\left(I, I, W^{i}\right) \subseteq\left\langle W^{i+1}\right\rangle$.
If $c \in I((a, a, b), c, z)=-(a, a, c), b, z)$ by (8.2) $\in(\langle W\rangle, b, z)$ by (7.3). Hence $\left((a, a, b), c, W^{i}\right) \subseteq\left(\langle W\rangle, R,\left\langle W^{i}\right\rangle\right) \subseteq$ $\left\langle W^{i+1}\right\rangle$. We have now shown $\left(I, I, W^{i}\right) \subseteq\left\langle W^{i+1}\right\rangle$; this completes the poof of Lemma (8).

LEMMA 9: $\left\langle W^{i}\right\rangle I \cdot I \subseteq W^{i+1}$.
PROOF : $\left(W^{i}\right) \# I \cdot I \subseteq\left(W^{i}\right) \# \cdot I^{2}+\left(\left(W^{i}\right) \#, I, I\right)$

$$
\begin{aligned}
& \subseteq\left\langle W^{i+1}\right\rangle+\left(W^{i}, I, I\right)+\left(W^{i} R, I, I\right) \text { by Lemmas }(4),(5) \text { and }(7) \\
& \subseteq\left\langle W^{i+1}\right\rangle+W^{i}(R, I, I)+\left(W^{i}, I, I\right) R+\left(W^{i}, R,[I, I]\right)
\end{aligned}
$$

By $0 \equiv N \subseteq\left\langle W^{i+1}\right\rangle$ by Lemmas (5),(7) and (8).

LEMMA 10: If R has n generators, then $T_{1}^{2 n+2}=0$.
PROOF : Let $I_{0}=R$ and define inductively $I_{i+1}=I_{i} \cdot I_{1}$. It is easy to show I_{i} is a right ideal for each I and $\left(T_{1}\right)^{I} \subseteq I_{i}$. By Lemma (8), $I_{2 i} \subseteq\left\langle W^{i}\right\rangle$. This means $R\left(T_{1}\right)^{2 n+2} \subseteq I_{2 n+2} \subseteq\left\langle W^{n+1}\right\rangle=0$.
We have finished the proof of Theorem 1.
LEMMA 11: In a finitely generated locally ($-1,1$) ring $R, x \in\left(x(a, b, c) T_{R}\right)^{c}$ implies $x=0$.
This means that if P is the right ideal generated by $x(a, b, c)$ which has all right multiples of $x(a, b, c)$, but not necessarily $x(a, b, c)$ as R might not have an identity, this right ideal is always a proper right ideal, and even if you enlarge it to P^{c}, it still is a proper right ideal.
PROOF : If $2^{i} 3^{i} x=x(a, b, c) \tau$ for some $\tau \in T_{R}$ then $2^{i} 3^{i} x=x T_{(\mathrm{a}, \mathrm{b}, \mathrm{c})} \tau$ and iterating $\left(2^{i} 3^{i}\right)^{n} x=x\left(T_{(a, b, c)} \tau\right)^{n}=0$ for suitable index $n>0$ as $T_{(a, b, c)} \tau \in$ the ideal T_{1} which is nilpotent. Therefore $x=0$.

LEMMA 12: Suppose R is not necessarily generated. Here also $x \in\left(x(a, b, c) T_{R}\right)^{c}$ implies $x=0$.

ON THE CENTER OF FINITELY GENERATED LOCALLY (-1,1) RINGS

PROOF : If $x \in\left(x(a, b, c) T_{R}\right)^{c}$ then $2^{i} 3^{i} x=x T_{(a, b, c)} \tau$ for some $\tau \in T_{R}$. τ is a combination of sums and products of a finite number of elements of the form $T_{r}: r \in R$. Let $R \#$ be the subring generated by a, b, c, x and the elements of which τ was made. In $R \# x \in\left(x(a, b, c) T_{R \sharp}\right)^{c}$ so $x=0$.

LEMMA 13: If R has no proper fat right ideals then R is associative.
PROOF : I is a fat right ideal (actually, a fat two-sided). Thus (1) $I=0$ and R is associative or
(2) $I=R$. In this case $R(R, R, R) \cdot R=0$ by Lemma (12); so $R=0$.

LEMMA 14: If R has no proper ideals then R has no proper fat right ideals.
PROOF : Assume R has no proper ideals and that P is a proper fat right ideal of R. If $z \in P$ then $(R, R, z) \subseteq P$ since (a, b, z) $=(z, b, a)$ by $0 \equiv R$.
We continue by letting $A_{1}=z$,

$$
\begin{aligned}
A_{2}= & \left(R, R, A_{1}\right) \\
& A_{n+1}=\left(R, R, A_{n}\right) .
\end{aligned}
$$

Let $A=\cup A_{i}$. Now $A \subseteq Z$ and $A \subseteq P ; A+A R \subseteq P$ and $A+A R$ is a 2 ideal. Thus $A=0$. So $P \cap Z=0$. Now $\left[P^{2}, R\right] \subseteq Z$ and $\left[P^{2}, R\right] \subseteq[P R, P] \subseteq P$ by $0 \equiv G$ and (i); therefore $\left[P^{2}, R\right]=0$. Thus $p^{2} \in P \cap Z$ so $p^{2}=0$. Furthermore $(R, P, P) \subseteq$ $(P, R, R)=0$; so $R P \cdot P=0$. Let $P_{1}=P+R P+(R, R, P) . \quad P_{1}$ is a right ideal since $(R, R, P) R \subseteq(R, R, R) P+(R, R R, P)+$ $(R, P R, R)$ by $0 \equiv D \subseteq R P+(R, R, P) \subseteq P_{1}$. We will show $P_{1}{ }^{c} \neq R . P_{l} P \subseteq P^{2}+(R P)+(R, R, P) P$

$$
\begin{aligned}
& \subseteq 0+0+(R, R, P) R+\left(R, R, P^{2}\right)+(R, P . R P) \text { by } 0 \equiv D \\
& \subseteq(R, P, R P) \subseteq(R, P, P R)+(R, P,[R, P]) \subseteq(P, R,[R, P])
\end{aligned}
$$

$$
\subseteq P \text { by (i) and } 0 \equiv Q
$$

Now $P_{1}{ }^{c} P^{c} \subseteq\left(P_{1} P\right)^{c} \subseteq P$. If $P_{1}{ }^{c}=R$ then $R P \subseteq P$ and P is a two-sided, impossible. Thus $P_{l}{ }^{c} \neq R$. Let us repeat this construction.

$$
\begin{aligned}
& P_{1}=(P+R P+(R, R, P))^{c} \\
& P_{2}=\left(P_{1}+R P_{1}+\left(R, R, P_{1}\right)\right)^{c} \\
& P_{3}=\left(P_{n}+R P_{n}+(R, R, P n)\right)^{c} .
\end{aligned}
$$

$P_{i} \neq R$ for all I, so $P_{i}^{2}=0$. Since $\cup P_{i}$ is a two-sided, we have $R^{2}=0$; this means $R P \subseteq P$. Therefore P is a two-ideal, contradiction.

THEOREM 2: If R is a simple locally $(-1,1)$ ring then is an associative field.
PROOF : If R has no proper ideals, by lemma (14) R has no proper fat right ideals and by Lemma (13) R is associative. The center of R is 0 or a field. $[R, R] \subseteq$ center. This implies $[x, y]^{3}=0$; hence $[x, y]=0$. R must be commutative. A simple associative commutative ring is a field. So R is a field.

REFERENCES

1. Kleinfeld.E, " A Generalization of strongly ($-1,1$) rings", Journal of algebra 119, 218-225(1988).
2. Hentzel.I.R. and Smith.H.F, " Simple locally ($-1,1$) nil rings", Journal of algebra 262- 272.Vol.101.No.1.June 1986.
3. Suvarna.K and Jayalakshmi.K, " A Result on prime ($-1,1$) rings", proceedings of international conference on advances in mathematical and computational methods (AMCM-2011),Vol.1, 44-46.
4. Subhashini.K, " Simplicity on Accessible and (-1,1) rings", Int.J. Contemp.Math.Sciences, 1.7,2012, no.48,2377-2381.
5. Subhashini.K, " Simple (1,0) rings", International Mathematical Forum, Vol.7,2012, no.48, 2377-2381.
