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ABSTRACT : In this paper we show that a simple finitely generated locally (-1,1) ring must be an
associative field.
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INTRODUCTION : Hentzel and smith [2] studied simple locally (-1,1) nil rings and show that a simple locally (-1,1) nil
ring of char. # 2,3 must be associative. Hentzel [2] studied properties of nil potent ideals in semi simple (-1,1) rings which
are nil. We concentrate mainly on [2] and prove that a simple finitely generated locally (1,1) ring must be an associative
field. Aringisa

(-1,2) ring it is satiesfies the conditions.

0=A(Xy,2) = (x,y,2) + (y,2,X) + (z,X,y). .. (D

0=B(xy.2) = (xy,2) + (x.2y). o (2)

A ring is locally (-1,1) if the subring generated by any two of its elements is (-1,1). For example, both (-1,1) rings and
alternative rings are locally (-1,1). In a nonassociative ring R, we define (x,y,z) = (xy)z — x(yz) and [x,y] = xy — yx for all x,y
€ R. Aring R is said to be simple if whenever A is an ideal of R then either A = R or A = 0. By the center Z of R we mean
the set of all elements z in N such that [z,R] =0 i.e.,, Z={z € R/ [ z,R] = 0}. Throughout this paper Z represents set of all
elements which commutes with all elements in the ring and z will always means and elements taken from Z. We use the
following identities which hold in locally (-1,1) char. # 2,3, which are proved by Hentzel [2].

0=C(xy.2) = (XY.y2) - (xy.2)y. . 3)
0=D(xy.zw) = (xyz,w) + (x;Wz,y) — (x.2W)y — (X,2,y)W. )
0=E(xY,2) = (xy%2) — (Xy.yz + zy). .. 5
0=F(xyy.2) = (xyy +yy.2) - (Xyyz +zy) - (xy.yz +zy). .. (6)
0=G(xy.2) = [xyz] + [y,zx] + [z.xy]. (D
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0=Hxy.2) = [x[y.21] + [y.[z.x]] + [z.[xY]]- .. (8)
0=1(xy.2,W) = (xy,ZW) — (X,yzW) + (xY,2W) = X(¥,Z,W) — (XY, 2)W. C)
0=J(xy.2) = [x,(y.zx)] + X2y X)]- ... (10)
0=K(xy,2) = [%,y,2)] + [,(y.,y.)]- .. (1D)
0=L(x,y,z) = [x.(y.y.2)] - 3[y,(x.z,y)]- .. (12)
0=M(xy.2) = [xy,Z] - XIy.z] - [x.zly - 2(x.y.2) — (zXy)- o (13)
0=N(xy.zw) = (xy,zw) + (xy,[2w]) - x(y.zw) + (x.ZW)y. o (14)
0=0(xy.zw) = (Ixyl.zw) — ([zwl.xy) — [x,(y.zw)] + [y,(x.zw)]. ... (15)
0=P(xy,z,w) = [x,(y,zW)] - [y,@w.x)] + [z,(w.x.y)] - [W,(x.y,2)]. ... (16)
0=Q(xy,u) = (x.y,u) + (y.x,u). (17
0=R(uxy) = (ux,y) = 2(y.xu). .. (18)
0=S(xy,u) = 3(xy,u) — [x,ylu + [x.yu]. .. (19)

[[x.y1.2] + [[y,2].x] + [[z.X],y] = S(x,y,z) + S(y,z,x) is called jacobi identity. ... (20)

If S is a subset of a locally (-1,1) ring R, by S¢ we mean {x / 2'3' x € S for some 0 < i,j}. It is easily shown S¢- T°C
(ST)¢ and (S°)°¢ = S¢, we call a set Sfat if S=S.

If Ris alocally (-1,1) ring and a € R, define Ta: R — R by rTa = ra (right multiplication by a). Ta is an element of
the associative ring of all endomorphism on the abelian group (R,+). Let Tr = the subring of endomorphism on (R,+)
generated by {T.\a € R}. Let | = (R,R,R). I is an ideal of R and I C {(x,x,R)\ x € R}* Lemma (4). Let T1= the ideal of T
generated by {Ta\ a € 1}. We shall now prove the following theorem by a succession of fourteen lemmas.

THEOREM 1: Let R be a finitely generated locally (-1,1) ring, then T; is a nilpotent ideal of T.
() [RR] cZ.

(i) (Z,Z2R)=(ZR,2)=(R,Z,2) = 0.

(i) (x,x,2) = 0.

(iv) (x,y,2)z' = (x,z'v,2).

(V) Z is a commutative associative subring of R.

(Vi) (X,x,¥)z = (x,X,zy).

PROOF : (i) By the Jacobi identity,

[[R,R],R] + [[R.RI,R] + [R,R],R] =0

[[R,RI,R] =0.

Thus [R,R] C Z

(i1) follows from 0 =Q and 0 =R.

(iii) follows from 0 = Q.

(iv) follows from 0 = N(z'y,x,z) — Q(x,z'y,z) + z" Q(y,x,z) and(ii).

(v) follows from (ii) and 0 = M.

(vi) follows from 0 = 2D(x,z,y,X) + R(z,xy,X) — R(z,y,X) - X + C(z,x,y) — B(z,x,xy) + B(z,x,y) - x + 2B(X,X,y) - Z — 2B(z,zy,X).
The proof of Theorem (1) begins. ¢

LEMMA 1: (3) (ZRR) + RRZ) C Z
() (Z,R,[RR]) = (RR],R,Z) = 0.
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PROOF : From [2, Lemma 5] we have (Z,R,R) C Z. Since (x,y,2) = (z,y,X) — R(z,y,X), by char. # 2, (R,R,Z) C Z. To prove
(b), from [2, Corollary 1] we have (Z,R,[R,R]) = 0. To second part is from ([x,y].r,z) = (z,r,[x,y]) — R(z,r,[x.,y]). ¢

LEMMA 2: A < {x\ 3x € additive subgroup generated by the set of all (y,y,r) for all y,r € R}.

PROOF : Let M = {x \ 3'x € additive subgroup generated by the set of all (y,y,r) for all y,r € R}. (R,R,R) < M by [2,
Lemma 2]. To show M is an ideal, by 0 = | it is only necessary to show x(y,y,r) € M for all x,y,r. This follows from
N(x.y.y.r) = C(x.y.r). ¢

LEMMA 3: Let W = (R,R,Z) then (R,R,W°) < W

PROOF : This is proved by induction. Since W < Z by Lemma 1, (R,R,W!) < W, and the result is true for i =1. We
now show (R,R,W" C W"and (R,RW?) < W implies (R,R,W™) < W™ (R,RWW?) C (RW ,RW) + (RW W)R +
RRWHW" by 0 =D C(RWR)W* + 0 + (R,RW)W" by (iv) and (ii) < W™ by induction. This finishes the poof of
Lemma 3. If SCR, let (S)# = ideal of R generated by S. ¢

LEMMA 4: (Wi)# = Wi + WR.

PROOF : It is sufficient to show that W' + WR is an ideal of R. (W' + WR)R < WR + W' - R — (W,R,R) < WR +
(RRW) by 0=R CW + WR. R(W + WR) C RW + R(RW) C RW + (R,R,W) C W + WR. Therefore W + WR is
anideal of R. ¢

LEMMA 5: (Wi)# - (W)# < (Wi
PROOF : We do this proof in two parts. First W' - (W)# = Wi(W! + WIR) < W™ + W R by (ii). Second WR - (W)# C
Wi - R(WI# + (WL (WI#,R) < Wi(Wi)# + Wi(Wi)# - R < (WH)# by the first part. ¢

LEMMA 6: If R is generated by a set of n elements G, then W™ =0,
PROOF : We do this proof in three parts. First: (Z,R,R) C z (Z,9,R)
geG
2(z,xy,r) = (zxy + yx,r) + (z,[xy1l,r) = (zxy + yxr) by (i) and (ii) = (zx,yr + ry) + (zy,xr + rx) by 0 = F = 2(z,x,yr) +
2(z,y,xr) by (i) and (ii).
Second: (Z,a,R)(Z,a,R) =0.
(Z,a,R)(Z,a,R) C (Z,(Z,R)a,R) by (iv) < (Z,(Z,a,aR),R) by 0 =C =0 by Lemma (1) and (ii).
Third: By0=R, 2W C (Z,R,R). Thus 2"™W™! C (Z,R,R)™™. We will show (Z,R,R)"* = 0.

n+1 n+1
ZRR™ < ¥ H (Z,xi,R), where x; € G by the first part. In each productH (Z,xi,R) at least two of the x; are
i=1 i=1

n+l
identical as there are n+1 x;'s taken from a set G containing n elements. By the second part H (Z,x,R) = 0. We have
i=1

shown W™ = 0. Let <W i> = ((WH#)°. For each I, <W i> is an ideal of R, and from Lemma (5) we have <W j> C

<Wi+j>. .

LEMMAT: IP C <W1>.

PROOF : This proof takes four steps: (7.1),(7.2),(7.3) and (7.4).
(a,a,x?) = (a,ax + xa,x) by 0 = E = 2(a,a,x)x + (a,[a,x],x) by 0 = C - 2(a,a,bc) = (a,a,bc + cb) + (a,a,bc + cb) by (i) and
(iii). Combining these two statements gives use
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2(a,a,bc) = 2(a,a,b)c + 2(a,a,c)b + (a,[a,b],c) + (a,[a,c],b). .. (7.1
We now show: [R,1] <W> . ..(72)
3R([a,c],a,b) € W. By Lemma (2) we have [R,(R,R,R)] < W and thus [R,I] CW.

c € | implies (a,a,c) € <W> .. (13)

(a,a,c) = [c,ala—[ca,a] + M(c,a,a) + B(a,c,a) € <W> . ... (7.9)
Let c € I. By (7.1) 2(aabc) = 2(aab)c + 2@.a.0)b + (@[ab]c) + @[aclb); (@[ablc) and (a[aclb) are in (W) by

(7.3). The remaining term 2(a,a,b)c must also be in W. We have shown (a,a,b)l C <W> and thus PCW. ¢

LEMMA 8: (I1W) < <W‘+l> .

PROOF : The proof of Lemma (8) takes four steps.

[(a,a,b),bz] = [(a,a,b)z,b] = [(a,a,zb),b] = — [(a,a,b),zb] ... (8.1)

By 0 =G, (vi) and 0 = K. Therefore [(a,a,b),bz] = 0.

((a,a,b),b,2) = 0. ... (8.2)
3((a,a,b),b,z) = [(a,a,b),b]z - [(a,a,b),bz] + S((a,a,b),b,2) = 0 by 0 =J and (8.1).

(LW < <W”l>. . (83)
If ¢ € 1 (@ab)c2) = - @ac)bz) by 8.2) € (W) b2) by (7.3). Hence ((aab).ecw) = (W) R <W‘>> c

<W i+l> . We have now shown (I,ILW) C <W i+l> : this completes the poof of Lemma (8).

LEMMA 9: <W‘>|-| c Wi,
PROOF : (Wiy# I - 1 < (Wi)# - 12+ ((W)#,1,1)
- <W‘+1> + (WiL1) + (WR,1,1) by Lemmas (4),(5) and (7).

c <W‘*1> FWIR LI + (WLLDR + (WiR,[11])

ByO=N C <W‘+1> by Lemmas (5),(7) and (8). ¢

LEMMA 10: If R has n generators, then T-""* = 0.
PROOF : Let Ip = R and define inductively li.y = I; - I1. It is easy to show l; is a right ideal for each I and (T1)' < Ii. By

Lemma (8), li < <W i > . This means R(T1)*™2 C oz < <W ”+1> -0

We have finished the proof of Theorem 1. ¢

LEMMA 11: In a finitely generated locally (-1,1) ring R, x € (x(a,b,c)Tr)® implies x = 0.

This means that if P is the right ideal generated by x(a,b,c) which has all right multiples of x(a,b,c), but not necessarily
x(a,b,c) as R might not have an identity, this right ideal is always a proper right ideal, and even if you enlarge it to PS, it
still is a proper right ideal.

PROOF : If 2'3'x = x(a,b,c)t for some 7 € Tr then 2!3'x = xTpe T and iterating (2'3")™x = X(Tape T )" = O for suitable
indexn>0as Tape T € the ideal T, whichis nilpotent. Therefore x=0.

LEMMA 12: Suppose R is not necessarily generated. Here also x € (x(a,b,c) Tr)® implies x = 0.
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PROOF : If x € (x(a,b,c) Tr)° then 23X = XxT(ap) T for some 7 € Tr. T is a combination of sums and products of a finite
number of elements of the form T, : r € R. Let R# be the subring generated by a,b,c,x and the elements of which t was
made. In R# x € (x(a,b,c)Tre)° SO X =0. ¢

LEMMA 13: If R has no proper fat right ideals then R is associative.
PROOF : | is a fat right ideal (actually, a fat two-sided). Thus (1) I = 0 and R is associative or
(2) I =R. Inthiscase R(R,R,R) - R=0by Lemma (12); SoR= 0. ¢

LEMMA 14: If R has no proper ideals then R has no proper fat right ideals.
PROOF : Assume R has no proper ideals and that P is a proper fat right ideal of R. If z € P then (R,R,z) C P since (a,b,z)
=(z,b,a) by 0 =R.
We continue by letting A; =z,
Az = (R,R,Al),
Ans1 = (RR,An).
Let A=UA.NowA C ZandA C P;A+AR C Pand A+ ARisa2ideal. ThusA=0.SoP NZ=0.Now [P?R] C Z
and [P%R] < [PR,P] < P by 0 = G and (i); therefore [P?2,R] = 0. Thus p? € P N Z so p? = 0. Furthermore (R,P,P) C
(P,RR) = 0; so RP- P =0. Let P, =P + RP + (R,R,P). P is a right ideal since (R,R,P)R < (R,R,R)P + (R,RR,P) +
(R,PRR) by 0=DC RP + (R,R,P) < P1. We will show P°#R . PsP < P? + (RP) + (R,R,P)P
c 0+0+(RRP)R+(RR,P)+(RP.RP)bY0=D
< (RP,RP) C (R,P,PR) + (R,P,[R,P]) C (P,R,[R,P])
C Pby(i)and 0 = Q.
Now P:¢ P¢ C (P:,P)° < P.If P,*=R then RP C P and P is a two-sided, impossible. Thus P:¢ # R. Let us repeat this
construction.
P.=(P +RP + (R,R,P))5,
P, = (P1 + RP1+ (R,R,P1))S,
Ps = (Pn + RP, + (R,R,PN))°.
Pi # R for all I, so P2 = 0. Since UP; is a two-sided, we have R? = 0; this means RP < P. Therefore P is a two-ideal,
contradiction. ¢

THEOREM 2: If R is a simple locally (-1,1) ring then is an associative field.

PROOEF : If R has no proper ideals, by lemma (14) R has no proper fat right ideals and by Lemma (13) R is associative.
The center of R is 0 or a field. [R,R] < center. This implies [x,y]* = 0; hence [x,y] = 0. R must be commutative. A simple
associative commutative ring is a field. So R is a field. .
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