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ABSTRACT : In this paper we show that a simple finitely generated locally (-1,1) ring must be an 

associative field. 
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INTRODUCTION : Hentzel and smith [2] studied simple locally (-1,1) nil rings and show that a simple locally (-1,1) nil 

ring of char. ≠ 2,3 must be associative. Hentzel [2] studied properties of nil potent ideals in semi simple (-1,1) rings which 

are nil. We concentrate mainly on [2] and prove that a simple finitely generated locally (1,1) ring must be an associative 

field. A ring is a  

(-1,1) ring it is satiesfies the conditions. 

 0 ≡ A(x,y,z) = (x,y,z) + (y,z,x) + (z,x,y).     …  (1) 

 0 ≡ B(x,y,z) = (x,y,z) + (x,z,y).      …  (2) 

A ring is locally (-1,1) if the subring generated by any two of its elements is (-1,1). For example, both (-1,1) rings and 

alternative rings are locally (-1,1). In a nonassociative ring R, we define (x,y,z) = (xy)z – x(yz) and [x,y] = xy – yx for all x,y 

∈ R. A ring R is said to be simple if whenever A is an ideal of R then either A = R or A = 0. By the center Z of R we mean 

the set of all elements z in N such that [z,R] = 0 i.e., Z = {z ∈ R / [ z,R] = 0}. Throughout this paper Z represents set of all 

elements which commutes with all elements in the ring and z will always means and elements taken from Z. We use the 

following identities which hold in locally (-1,1)  char. ≠ 2,3, which are proved by Hentzel [2]. 

0 ≡ C(x,y,z) = (x,y,yz) – (x,y,z)y.      …  (3) 

 

0 ≡ D(x,y,z,w) = (x,yz,w) + (x,wz,y) – (x,z,w)y – (x,z,y)w.   …  (4) 

0 ≡ E(x,y,z) = (x,y2,z) – (x,y,yz + zy).      …  (5) 

0 ≡ F(x,y,y′,z) = (x,yy′ + y′y,z) – (x,y,y′z + z y′) – (x,y′,yz + zy).  …  (6) 

0 ≡ G(x,y,z) = [x,yz] + [y,zx] + [z,xy].      …  (7) 
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0 ≡ H(x,y,z) = [x,[y,z]] + [y,[z,x]] + [z,[x,y]].     …  (8) 

0 ≡ I(x,y,z,w) = (xy,z,w) – (x,yz,w) + (x,y,zw) – x(y,z,w) – (x,y,z)w.  …  (9) 

0 ≡ J(x,y,z) = [x,(y,z,x)] + [x,(z,y,x)].      …  (10) 

0 ≡ K(x,y,z) = [x,(y,y,z)] + [z,(y,y,x)].      …  (11) 

0 ≡ L(x,y,z) = [x,(y,y,z)] – 3[y,(x,z,y)].      …  (12) 

0 ≡ M(x,y,z) = [xy,z] – x[y,z] – [x,z]y – 2(x,y,z) – (z,x,y).   …  (13) 

0 ≡ N(x,y,z,w) = (xy,z,w) + (x,y,[z,w]) – x(y,z,w) + (x,z,w)y.   …  (14) 

0 ≡ O(x,y,z,w) = ([x,y],z,w) – ([z,w],x,y) – [x,(y,z,w)] + [y,(x,z,w)].  …  (15) 

0 ≡ P(x,y,z,w) = [x,(y,z,w)] – [y,(z,w,x)] + [z,(w,x,y)] – [w,(x,y,z)].  …  (16) 

0 ≡ Q(x,y,u) = (x,y,u) + (y,x,u).      …   (17) 

0 ≡ R(u,x,y) = (u,x,y) – 2(y,x,u).      …  (18) 

0 ≡ S(x,y,u) = 3(x,y,u) – [x,y]u + [x,yu].     …  (19) 

[[x,y],z] + [[y,z],x] + [[z,x],y] = S(x,y,z) + S(y,z,x) is called jacobi identity.  …  (20) 

          If S is a subset of a locally (-1,1) ring R, by Sc  we mean {x / 2i3i x ∈ S for some 0 ≤ i,j}. It is easily shown Sc ∙ Tc  

(ST)c and (Sc)c = Sc, we call a set S fat if Sc = S. 

          If R is a locally (-1,1) ring and a ∈ R, define Ta : R → R by rTa = ra (right multiplication by a). Ta is an element of 

the associative ring of all endomorphism on the abelian group (R,+). Let TR = the subring of endomorphism on (R,+) 

generated by {Ta\a ∈ R}. Let I = (R,R,R)c. I is an ideal of R and I {(x,x,R)\ x ∈ R}c Lemma (4). Let T1= the ideal of TR 

generated by {Ta\ a ∈ I}. We shall now prove the following theorem by a succession of fourteen lemmas. 

THEOREM 1: Let R be a finitely generated locally (-1,1) ring, then Ti is a nilpotent ideal of TR.  

(i) [R,R] Z.  

(ii) (Z,Z,R) = (Z,R,Z) = (R,Z,Z) = 0. 

(iii) (x,x,Z) = 0. 

(iv) (x,y,z)z′ = (x,z′y,z). 

(v) Z is a commutative associative subring of R. 

(vi) (x,x,y)z = (x,x,zy). 

PROOF : (i) By the Jacobi identity, 

[[R,R],R] + [[R,R],R] + [R,R],R] = 0 

[[R,R],R] = 0. 

Thus [R,R]   Z. 

(ii) follows from 0 ≡ Q and 0 ≡ R. 

(iii) follows from 0 ≡ Q. 

(iv) follows from 0 = N(z′,y,x,z) – Q(x,z′y,z) + z′∙ Q(y,x,z) and(ii). 

(v) follows from (ii) and 0 ≡ M. 

(vi) follows from 0 = 2D(x,z,y,x) + R(z,xy,x) – R(z,y,x) ∙ x + C(z,x,y) – B(z,x,xy) + B(z,x,y) ∙ x + 2B(x,x,y) ∙ z – 2B(z,zy,x). 

The proof of Theorem (1) begins.   ♦ 

LEMMA 1: (a) (Z,R,R) + (R,R,Z)   Z. 

                     (b) (Z,R,[R,R]) = ([R,R],R,Z) = 0. 
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PROOF : From [2, Lemma 5] we have (Z,R,R) Z. Since (x,y,z) = (z,y,x) – R(z,y,x), by char. ≠ 2, (R,R,Z)   Z. To prove 

(b), from [2, Corollary 1] we have (Z,R,[R,R]) = 0. To second part is from ([x,y],r,z) = (z,r,[x,y]) – R(z,r,[x,y]).   ♦  

  

LEMMA 2: A  {x \ 3ix ∈ additive subgroup generated by the set of all (y,y,r) for all y,r ∈ R}. 

PROOF : Let M = {x \ 3ix ∈ additive subgroup generated by the set of all (y,y,r) for all y,r ∈ R}. (R,R,R)   M by [2, 

Lemma 2]. To show M is an ideal, by 0 ≡ I it is only necessary to show x(y,y,r) ∈ M for all x,y,r. This follows from 

N(x,y,y,r) – C(x,y,r).  ♦ 

LEMMA 3: Let W = (R,R,Z) then (R,R,Wc)   Wi. 

PROOF : This is proved by induction. Since W   Z by Lemma 1, (R,R,W1)   W1, and the result is true for i =1. We 

now show (R,R,Wr)   Wr and (R,R,Ws)   Ws implies (R,R,Wr+s)   Wr+s. (R,R,WrWs)  (R,Wr,RWs) + (R,Wr,Ws)R + 

(R,R,Ws)Wr  by 0 ≡ D  (R,Wr,R)Ws + 0 + (R,R,Ws)Wr  by (iv) and (ii)   Wr+s by induction. This finishes the poof of 

Lemma 3. If SR, let (S)# = ideal of R generated by S.   ♦ 

LEMMA 4: (Wi)# = Wi + WiR. 

PROOF : It is sufficient to show that Wi + WiR is an ideal of R. (Wi + WiR)R   WiR + Wi ∙ R2 – (Wi,R,R)   WiR + 

(R,R,Wi) by 0 ≡ R Wi + WiR. R(Wi + WiR)   RWi + R(RWi)   RWi + (R,R,Wi)   Wi + WiR. Therefore Wi + WiR is 

an ideal of R.    ♦ 

 

LEMMA 5: (Wi)# ∙ (Wj)#   (Wi+j)#. 

PROOF : We do this proof in two parts. First Wi ∙ (Wj)# = Wi(Wj + WjR)   Wi+j + Wi+j R by (ii). Second WiR ∙ (Wj)# 

Wi ∙ R(Wj)# + (Wi,(Wj)#,R)   Wi(Wj)# + Wi(Wj)# ∙ R   (Wi+j)# by the first part.  ♦   

LEMMA 6: If R is generated by a set of n elements G, then Wn+1 = 0. 

PROOF : We do this proof in three parts. First: (Z,R,R)   
Gg

(Z,g,R) 

2(z,xy,r) = (z,xy + yx,r) + (z,[x,y],r) = (z,xy + yx,r) by (i) and (ii) = (z,x,yr + ry) + (z,y,xr + rx) by 0 ≡ F = 2(z,x,yr) + 

2(z,y,xr) by (i) and (ii). 

Second:    (Z,a,R)(Z,a,R) = 0. 

(Z,a,R)(Z,a,R)   (Z,(Z,R)a,R) by (iv)   (Z,(Z,a,aR),R) by 0 ≡ C = 0 by Lemma (1) and (ii). 

Third:   By 0 ≡ R, 2W   (Z,R,R). Thus 2n+1Wn+1   (Z,R,R)n+1. We will show (Z,R,R)n+1 = 0. 

(Z,R,R)n+1   ∑ 




1

1

n

i

(Z,xi,R), where xi ∈ G by the first part. In each product




1

1

n

i

(Z,xi,R) at least two of the xi are 

identical as there are n+1 xi
’s taken from a set G containing n elements. By the second part 





1

1

n

i

(Z,xi,R) = 0. We have 

shown Wn+1 = 0. Let 
iW  = ((Wi)#)c. For each I, 

iW  is an ideal of R, and from Lemma (5) we have
jW    

jiW 
.     ♦ 

LEMMA 7: I2   
1W . 

PROOF : This proof takes four steps: (7.1),(7.2),(7.3) and (7.4). 

(a,a,x2) = (a,ax + xa,x) by 0 ≡ E = 2(a,a,x)x + (a,[a,x],x) by 0 ≡ C ∙ 2(a,a,bc) = (a,a,bc + cb) + (a,a,bc + cb) by (i) and 

(iii). Combining these two statements gives use 
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2(a,a,bc) = 2(a,a,b)c + 2(a,a,c)b + (a,[a,b],c) + (a,[a,c],b).    … (7.1) 

We now show:  [R,I]  W .        … (7.2) 

3R([a,c],a,b) ∈ W. By Lemma (2) we have [R,(R,R,R)]   W and thus [R,I] W.  

c ∈ I implies (a,a,c) ∈ W
        …  (7.3) 

(a,a,c) = [c,a]a – [ca,a] + M(c,a,a) + B(a,c,a) ∈ W .    …  (7.4) 

Let c ∈ I. By (7.1) 2(a,a,bc) = 2(a,a,b)c + 2(a,a,c)b + (a,[a,b],c) + (a,[a,c],b); (a,[a,b],c) and (a,[a,c],b) are in W  by 

(7.3). The remaining term 2(a,a,b)c must also be in W. We have shown (a,a,b)I    W  and thus I2W.     ♦ 

 

LEMMA 8: (I,I,Wi)   
1iW . 

PROOF : The proof of Lemma (8) takes four steps. 

[(a,a,b),bz] = [(a,a,b)z,b] = [(a,a,zb),b] = − [(a,a,b),zb]    …  (8.1) 

By 0 ≡ G, (vi) and 0 ≡ K. Therefore [(a,a,b),bz] = 0.  

((a,a,b),b,z) = 0.         …  (8.2) 

3((a,a,b),b,z) = [(a,a,b),b]z – [(a,a,b),bz] + S((a,a,b),b,z) = 0 by 0 ≡ J and (8.1). 

(I,I,Wi)   
1iW .         …  (8.3) 

If c ∈ I ((a,a,b),c,z) = − (a,a,c),b,z) by (8.2) ∈ ( W ,b,z) by (7.3). Hence ((a,a,b),c,Wi)   ( W ,R, 
iW )   

1iW . We have now shown (I,I,Wi)   
1iW ; this completes the poof of Lemma (8).     ♦ 

 

LEMMA 9: 
iW I ∙ I   Wi+1. 

PROOF : (Wi)# I ∙ I   (Wi)# ∙ I2 + ((Wi)#,I,I) 

                                     
1iW  + (Wi,I,I) + (WiR,I,I)  by Lemmas (4),(5) and (7). 

                                     
1iW  + Wi(R,I,I) + (Wi,I,I)R + (Wi,R,[I,I]) 

By 0 ≡ N   
1iW  by Lemmas (5),(7) and (8).       ♦ 

 

LEMMA 10: If R has n generators, then T
22

1

n
= 0. 

PROOF : Let I0 = R and define inductively Ii+1 = Ii ∙ I1. It is easy to show Ii is a right ideal for each I and (T1)
I   Ii.  By 

Lemma (8), I2i   
iW . This means R(T1)

2n+2   I2n+2   
1nW  = 0. 

We have finished the proof of Theorem 1.      ♦ 

 

LEMMA 11: In a finitely generated locally (-1,1) ring R, x ∈ (x(a,b,c)TR)c implies x = 0. 

   This means that if P is the right ideal generated by x(a,b,c) which has all right multiples of x(a,b,c), but not necessarily 

x(a,b,c) as R might not have an identity, this right ideal is always a proper right ideal, and even if you enlarge it to Pc, it 

still is a proper right ideal. 

PROOF : If 2i3ix = x(a,b,c)𝜏 for some 𝜏 ∈ TR then 2i3ix = xT(a,b,c) 𝜏  and iterating (2i3i)nx = x(T(a,b,c) 𝜏 )n = 0 for suitable 

index n > 0 as T(a,b,c) 𝜏  ∈ the ideal T1 which is nilpotent. Therefore x = 0.    ♦ 

 

LEMMA 12: Suppose R is not necessarily generated. Here also x ∈ (x(a,b,c) TR)c implies x = 0. 
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PROOF : If  x ∈ (x(a,b,c) TR)c then 2i3ix = xT(a,b,c) 𝜏 for some 𝜏 ∈ TR. 𝜏 is a combination of sums and products of a finite 

number of elements of the form Tr : r ∈ R. Let R# be the subring generated by a,b,c,x and the elements of which 𝜏 was 

made. In R# x ∈ (x(a,b,c)TR#)
c so x = 0. ♦ 

 

LEMMA 13: If R has no proper fat right ideals then R is associative. 

PROOF : I is a fat right ideal (actually, a fat two-sided). Thus (1) I = 0 and R is associative or 

(2) I = R. In this case R(R,R,R) ∙ R = 0 by Lemma (12); so R =  0.   ♦ 

 

LEMMA 14: If R has no proper ideals then R has no proper fat right ideals. 

PROOF : Assume R has no proper ideals and that P is a proper fat right ideal of R. If z ∈ P then (R,R,z)   P since (a,b,z) 

= (z,b,a) by 0 ≡ R. 

We continue by letting   A1 = z, 

                                        A2 = (R,R,A1), 

       An+1 = (R,R,An). 

Let A = ∪Ai. Now A   Z and A   P; A + AR   P and A + AR is a 2 ideal. Thus A = 0. So P ∩ Z = 0. Now [P2,R]   Z 

and [P2,R]   [PR,P]   P by 0 ≡ G and (i); therefore [P2,R] = 0. Thus p2 ∈ P ∩ Z so p2 = 0. Furthermore (R,P,P)   

(P,R,R) = 0; so RP∙ P = 0. Let P1 = P + RP + (R,R,P).  P1 is a right ideal since (R,R,P)R   (R,R,R)P + (R,RR,P) + 

(R,PR,R) by 0 ≡ D  RP + (R,R,P)   P1. We will show P1
c ≠ R . P1P   P2 + (RP) + (R,R,P)P 

                  0 + 0 + (R,R,P)R + (R,R,P2) + (R,P.RP) by 0 ≡ D 

                  (R,P,RP)   (R,P,PR) + (R,P,[R,P])   (P,R,[R,P]) 

                  P by (i) and 0 ≡ Q. 

Now P1
c Pc   (P1P)c   P. If P1

c = R then RP   P and P is a two-sided, impossible. Thus P1
c ≠ R.  Let us repeat this 

construction. 

      P1 = (P + RP + (R,R,P))c, 

      P2 = (P1 + RP1+ (R,R,P1))
c, 

      P3 = (Pn + RPn + (R,R,Pn))c. 

Pi ≠ R for all I, so Pi
2 = 0. Since ∪Pi is a two-sided, we have R2 = 0; this means RP   P. Therefore P is a two-ideal, 

contradiction.  ♦ 

 

THEOREM 2: If R is a simple locally (-1,1) ring then is an associative field. 

PROOF : If  R has no proper ideals, by lemma (14) R has no proper fat right ideals and by Lemma (13) R is associative. 

The center of R is 0 or a field. [R,R]   center. This implies [x,y]3 = 0;  hence [x,y] = 0. R must be commutative. A simple 

associative commutative ring is a field. So R is a field.         ♦      
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