ON THE CENTER OF FINITELY GENERATED LOCALLY (-1,1) RINGS

K.Jayalakshmi

Assistant Professor in Mathematics, J.N.T.University Anantapur College of Engg. J.N.T.University Anantapur. Anantapur.(A.P) INDIA. jayalakshmikaramsi@gmail.com

C.Manjula

Department of Mathematics,
J.N.T.University Anantapur College of Engg.
J.N.T.University Anantapur.
Anantapur.(A.P) INDIA.
man7ju@gmail.com

ABSTRACT: In this paper we show that a simple finitely generated locally (-1,1) ring must be an associative field.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 17D20

KEY WORDS: Locally (-1,1) ring, nilpotent ideal, simple ring.

INTRODUCTION: Hentzel and smith [2] studied simple locally (-1,1) nil rings and show that a simple locally (-1,1) nil ring of char. $\neq 2,3$ must be associative. Hentzel [2] studied properties of nil potent ideals in semi simple (-1,1) rings which are nil. We concentrate mainly on [2] and prove that a simple finitely generated locally (1,1) ring must be an associative field. A ring is a

(-1,1) ring it is satisfies the conditions.

$$0 \equiv A(x,y,z) = (x,y,z) + (y,z,x) + (z,x,y).$$
 ... (1)

$$0 \equiv B(x, y, z) = (x, y, z) + (x, z, y). \tag{2}$$

A ring is locally (-1,1) if the subring generated by any two of its elements is (-1,1). For example, both (-1,1) rings and alternative rings are locally (-1,1). In a nonassociative ring R, we define (x,y,z) = (xy)z - x(yz) and [x,y] = xy - yx for all $x,y \in R$. A ring R is said to be simple if whenever A is an ideal of R then either A = R or A = 0. By the center Z of R we mean the set of all elements z in N such that [z,R] = 0 i.e., $Z = \{z \in R \mid [z,R] = 0\}$. Throughout this paper Z represents set of all elements which commutes with all elements in the ring and z will always means and elements taken from Z. We use the following identities which hold in locally (-1,1) char. $\neq 2,3$, which are proved by Hentzel [2].

$$0 \equiv C(x,y,z) = (x,y,yz) - (x,y,z)y. \qquad ... (3)$$

$$0 \equiv D(x,y,z,w) = (x,yz,w) + (x,wz,y) - (x,z,w)y - (x,z,y)w. \qquad ... (4)$$

$$0 \equiv E(x,y,z) = (x,y^2,z) - (x,y,yz+zy). \qquad ... (5)$$

$$0 \equiv F(x,y,y',z) = (x,yy'+y'y,z) - (x,y,y'z+zy') - (x,y',yz+zy). \qquad ... (6)$$

$$0 \equiv G(x, y, z) = [x, yz] + [y, zx] + [z, xy]. \tag{7}$$

K.Jayalakshmi & C.Manjula

$$0 \equiv H(x,y,z) = [x,[y,z]] + [y,[z,x]] + [z,[x,y]]. \qquad ... (8)$$

$$0 \equiv I(x,y,z,w) = (xy,z,w) - (x,yz,w) + (x,y,zw) - x(y,z,w) - (x,y,z)w. \qquad ... (9)$$

$$0 \equiv J(x,y,z) = [x,(y,z,x)] + [x,(z,y,x)]. \qquad ... (10)$$

$$0 \equiv K(x,y,z) = [x,(y,y,z)] + [z,(y,y,x)]. \qquad ... (11)$$

$$0 \equiv L(x,y,z) = [x,(y,y,z)] - 3[y,(x,z,y)]. \qquad ... (12)$$

$$0 \equiv M(x,y,z) = [xy,z] - x[y,z] - [x,z]y - 2(x,y,z) - (z,x,y). \qquad ... (13)$$

$$0 \equiv N(x,y,z,w) = (xy,z,w) + (x,y,[z,w]) - x(y,z,w) + (x,z,w)y. \qquad ... (14)$$

$$0 \equiv O(x,y,z,w) = ([x,y],z,w) - ([z,w],x,y) - [x,(y,z,w)] + [y,(x,z,w)]. \qquad ... (15)$$

$$0 \equiv P(x,y,z,w) = [x,(y,z,w)] - [y,(z,w,x)] + [z,(w,x,y)] - [w,(x,y,z)]. \qquad ... (16)$$

$$0 \equiv Q(x,y,u) = (x,y,u) + (y,x,u). \qquad ... (17)$$

$$0 \equiv R(u,x,y) = (u,x,y) - 2(y,x,u). \qquad ... (18)$$

[[x,y],z] + [[y,z],x] + [[z,x],y] = S(x,y,z) + S(y,z,x) is called jacobi identity. ... (20)

If S is a subset of a locally (-1,1) ring R, by S^c we mean $\{x / 2^i 3^i x \in S \text{ for some } 0 \le i,j\}$. It is easily shown $S^c \cdot T^c \subseteq (ST)^c$ and $(S^c)^c = S^c$, we call a set S fat if $S^c = S$.

... (19)

If R is a locally (-1,1) ring and $a \in R$, define $T_a : R \to R$ by $rT_a = ra$ (right multiplication by a). T_a is an element of the associative ring of all endomorphism on the abelian group (R,+). Let $T_R =$ the subring of endomorphism on (R,+) generated by $\{T_a \mid a \in R\}$. Let $I = (R,R,R)^c$. I is an ideal of R and $I \subseteq \{(x,x,R) \mid x \in R\}^c$ Lemma (4). Let $T_1 =$ the ideal of T_R generated by $\{T_a \mid a \in I\}$. We shall now prove the following theorem by a succession of fourteen lemmas.

THEOREM 1: Let R be a finitely generated locally (-1,1) ring, then T_i is a nilpotent ideal of T_R .

- (i) $[R,R] \subset Z$.
- (ii) (Z,Z,R) = (Z,R,Z) = (R,Z,Z) = 0.

 $0 \equiv S(x, y, u) = 3(x, y, u) - [x, y]u + [x, yu].$

- (iii) (x, x, Z) = 0.
- (iv) (x,y,z)z' = (x,z'y,z).
- (v) Z is a commutative associative subring of R.
- (vi) (x, x, y)z = (x, x, zy).

PROOF: (i) By the Jacobi identity,

[[R,R],R] + [[R,R],R] + [R,R],R] = 0

[[R,R],R] = 0.

Thus $[R,R] \subseteq Z$.

- (ii) follows from $0 \equiv Q$ and $0 \equiv R$.
- (iii) follows from $0 \equiv Q$.
- (iv) follows from $0 = N(z',y,x,z) Q(x,z'y,z) + z' \cdot Q(y,x,z)$ and(ii).
- (v) follows from (ii) and $0 \equiv M$.
- (vi) follows from $0 = 2D(x, z, y, x) + R(z, xy, x) R(z, y, x) \cdot x + C(z, x, y) B(z, x, y) + B(z, x, y) \cdot x + 2B(x, x, y) \cdot z 2B(z, zy, x)$. The proof of Theorem (1) begins. \blacklozenge

LEMMA 1: (a)
$$(Z,R,R) + (R,R,Z) \subseteq Z$$
.
(b) $(Z,R,[R,R]) = ([R,R],R,Z) = 0$.

ON THE CENTER OF FINITELY GENERATED LOCALLY (-1,1) RINGS

PROOF: From [2, Lemma 5] we have $(Z,R,R) \subseteq Z$. Since (x,y,z) = (z,y,x) - R(z,y,x), by char. $\neq 2$, $(R,R,Z) \subseteq Z$. To prove (b), from [2, Corollary 1] we have (Z,R,[R,R]) = 0. To second part is from ([x,y],r,z) = (z,r,[x,y]) - R(z,r,[x,y]).

LEMMA 2: $A \subseteq \{x \setminus 3^i x \in \text{ additive subgroup generated by the set of all } (y,y,r) \text{ for all } y,r \in R\}.$

PROOF: Let $M = \{x \setminus 3^i x \in \text{additive subgroup generated by the set of all } (y,y,r) \text{ for all } y,r \in R\}$. $(R,R,R) \subseteq M$ by [2, Lemma 2]. To show M is an ideal, by $0 \equiv I$ it is only necessary to show $x(y,y,r) \in M$ for all x,y,r. This follows from N(x,y,y,r) - C(x,y,r).

LEMMA 3: Let W = (R, R, Z) then $(R, R, W^c) \subseteq W^i$.

PROOF: This is proved by induction. Since $W \subseteq Z$ by Lemma 1, $(R,R,W^1) \subseteq W^1$, and the result is true for i = 1. We now show $(R,R,W^r) \subseteq W^r$ and $(R,R,W^s) \subseteq W^s$ implies $(R,R,W^{r+s}) \subseteq W^{r+s}$. $(R,R,W^rW^s) \subseteq (R,W^r,RW^s) + (R,W^r,W^s)R + (R,R,W^s)W^r$ by $0 \equiv D \subseteq (R,W^r,R)W^s + 0 + (R,R,W^s)W^s$ by (iv) and (ii) $\subseteq W^{r+s}$ by induction. This finishes the poof of Lemma 3. If $S \subseteq R$, let (S)# = ideal of R generated by S.

LEMMA 4: $(W^{i})\# = W^{i} + W^{i}R$.

PROOF: It is sufficient to show that $W^i + W^iR$ is an ideal of R. $(W^i + W^iR)R \subseteq W^iR + W^i \cdot R^2 - (W^i,R,R) \subseteq W^iR + (R,R,W^i)$ by $0 \equiv R \subseteq W^i + W^iR$. $R(W^i + W^iR) \subseteq RW^i + R(RW^i) \subseteq RW^i + (R,R,W^i) \subseteq W^i + W^iR$. Therefore $W^i + W^iR$ is an ideal of R.

LEMMA 5: $(W^i)\# \cdot (W^j)\# \subset (W^{i+j})\#$.

PROOF: We do this proof in two parts. First $W^i \cdot (W^j) \# = W^i(W^j + W^jR) \subseteq W^{i+j} + W^{i+j} R$ by (ii). Second $W^iR \cdot (W^j) \# \subseteq W^i \cdot R(W^j) \# + (W^i, (W^j) \#, R) \subseteq W^i(W^j) \# + W^i(W^j) \# +$

LEMMA 6: If *R* is generated by a set of *n* elements *G*, then $W^{n+1} = 0$.

PROOF: We do this proof in three parts. First: $(Z,R,R) \subseteq \sum_{g \in G} (Z,g,R)$

2(z,xy,r) = (z,xy + yx,r) + (z,[x,y],r) = (z,xy + yx,r) by (i) and (ii) = (z,x,yr + ry) + (z,y,xr + rx) by 0 = F = 2(z,x,yr) + 2(z,y,xr) by (i) and (ii).

Second: (Z,a,R)(Z,a,R) = 0.

 $(Z,a,R)(Z,a,R) \subseteq (Z,(Z,R)a,R)$ by (iv) $\subseteq (Z,(Z,a,aR),R)$ by $0 \equiv C = 0$ by Lemma (1) and (ii).

Third: By $0 \equiv R$, $2W \subseteq (Z,R,R)$. Thus $2^{n+1}W^{n+1} \subseteq (Z,R,R)^{n+1}$. We will show $(Z,R,R)^{n+1} = 0$.

 $(Z,R,R)^{n+1} \subseteq \sum_{i=1}^{n+1} (Z,x_i,R)$, where $x_i \in G$ by the first part. In each product $\prod_{i=1}^{n+1} (Z,x_i,R)$ at least two of the x_i are

identical as there are n+1 x_i 's taken from a set G containing n elements. By the second part $\prod_{i=1}^{n+1} (Z_i, x_i, R) = 0$. We have

shown $W^{n+1} = 0$. Let $\langle W^i \rangle = ((W^i)\#)^c$. For each I, $\langle W^i \rangle$ is an ideal of R, and from Lemma (5) we have $\langle W^j \rangle \subseteq \langle W^{i+j} \rangle$.

LEMMA 7: $I^2 \subseteq \langle W^1 \rangle$.

PROOF: This proof takes four steps: (7.1),(7.2),(7.3) and (7.4).

 $(a,a,x^2) = (a,ax + xa,x)$ by $0 \equiv E = 2(a,a,x)x + (a,[a,x],x)$ by $0 \equiv C \cdot 2(a,a,bc) = (a,a,bc + cb) + (a,a,bc + cb)$ by (i) and (iii). Combining these two statements gives use

K.Jayalakshmi & C.Manjula

$$2(a,a,bc) = 2(a,a,b)c + 2(a,a,c)b + (a,[a,b],c) + (a,[a,c],b).$$
 ... (7.1)
We now show: $[R,I] \subseteq \langle W \rangle$ (7.2)

 $3R([a,c],a,b) \in W$. By Lemma (2) we have $[R,(R,R,R)] \subset W$ and thus $[R,I] \subset W$.

$$c \in I \text{ implies } (a, a, c) \in \langle W \rangle$$
 ... (7.3)

$$(a,a,c) = [c,a]a - [ca,a] + M(c,a,a) + B(a,c,a) \in \langle W \rangle.$$
 (7.4)

Let $c \in I$. By (7.1) 2(a,a,bc) = 2(a,a,b)c + 2(a,a,c)b + (a,[a,b],c) + (a,[a,c],b); (a,[a,b],c) and (a,[a,c],b) are in $\langle W \rangle$ by (7.3). The remaining term 2(a,a,b)c must also be in W. We have shown $(a,a,b)I \subseteq \langle W \rangle$ and thus $I^2 \subseteq W$.

LEMMA 8: $(I,I,W^i) \subseteq \langle W^{i+1} \rangle$.

PROOF: The proof of Lemma (8) takes four steps.

$$[(a,a,b),bz] = [(a,a,b)z,b] = [(a,a,zb),b] = -[(a,a,b),zb]$$
 ... (8.1)

By
$$0 \equiv G$$
, (vi) and $0 \equiv K$. Therefore $[(a,a,b),bz] = 0$.

$$((a,a,b),b,z)=0.$$

3((a,a,b),b,z) = [(a,a,b),b]z - [(a,a,b),bz] + S((a,a,b),b,z) = 0 by $0 \equiv J$ and (8.1).

$$(I,I,W^{i}) \subseteq \left\langle W^{i+1} \right\rangle. \tag{8.3}$$

If $c \in I$ ((a,a,b),c,z) = -(a,a,c),b,z) by $(8.2) \in (\langle W \rangle,b,z)$ by (7.3). Hence $((a,a,b),c,W^i) \subseteq (\langle W \rangle,R,\langle W^i \rangle) \subseteq \langle W^{i+1} \rangle$. We have now shown $(I,I,W^i) \subseteq \langle W^{i+1} \rangle$; this completes the poof of Lemma (8).

... (8.2)

LEMMA 9: $\langle W^i \rangle I \cdot I \subseteq W^{i+1}$.

PROOF:
$$(W^{i}) \# I \cdot I \subset (W^{i}) \# \cdot I^{2} + ((W^{i}) \#, I, I)$$

$$\subseteq \left\langle W^{i+1} \right\rangle + (W^{i},I,I) + (W^{i}R,I,I) \text{ by Lemmas (4),(5) and (7).}$$

$$\subseteq \left\langle W^{i+1} \right\rangle + W^{i}(R,I,I) + (W^{i},I,I)R + (W^{i},R,[I,I])$$

By
$$0 \equiv N \subseteq \langle W^{i+1} \rangle$$
 by Lemmas (5),(7) and (8).

LEMMA 10: If *R* has n generators, then $T_1^{2n+2} = 0$.

PROOF: Let $I_0 = R$ and define inductively $I_{i+1} = I_i \cdot I_1$. It is easy to show I_i is a right ideal for each I and $(T_1)^I \subseteq I_i$. By Lemma (8), $I_{2i} \subseteq \langle W^i \rangle$. This means $R(T_1)^{2n+2} \subseteq I_{2n+2} \subseteq \langle W^{n+1} \rangle = 0$.

We have finished the proof of Theorem 1. ◆

LEMMA 11: In a finitely generated locally (-1,1) ring R, $x \in (x(a,b,c)T_R)^c$ implies x = 0.

This means that if P is the right ideal generated by x(a,b,c) which has all right multiples of x(a,b,c), but not necessarily x(a,b,c) as R might not have an identity, this right ideal is always a proper right ideal, and even if you enlarge it to P^c , it still is a proper right ideal.

PROOF: If $2^i 3^i x = x(a,b,c)\tau$ for some $\tau \in T_R$ then $2^i 3^i x = x T_{(a,b,c)}\tau$ and iterating $(2^i 3^i)^n x = x (T_{(a,b,c)}\tau)^n = 0$ for suitable index n > 0 as $T_{(a,b,c)}\tau \in \text{the ideal } T_1$ which is nilpotent. Therefore x = 0.

LEMMA 12: Suppose R is not necessarily generated. Here also $x \in (x(a,b,c) T_R)^c$ implies x = 0.

ON THE CENTER OF FINITELY GENERATED LOCALLY (-1,1) RINGS

PROOF: If $x \in (x(a,b,c)\ T_R)^c$ then $2^i 3^j x = x T_{(a,b,c)} \tau$ for some $\tau \in T_R$. τ is a combination of sums and products of a finite number of elements of the form $T_r : r \in R$. Let $R^\#$ be the subring generated by a,b,c,x and the elements of which τ was made. In $R^\# x \in (x(a,b,c)T_{R^\#})^c$ so x = 0.

LEMMA 13: If *R* has no proper fat right ideals then *R* is associative.

PROOF: *I* is a fat right ideal (actually, a fat two-sided). Thus (1) I = 0 and R is associative or (2) I = R. In this case $R(R,R,R) \cdot R = 0$ by Lemma (12); so R = 0.

LEMMA 14: If *R* has no proper ideals then *R* has no proper fat right ideals.

PROOF: Assume *R* has no proper ideals and that *P* is a proper fat right ideal of *R*. If $z \in P$ then $(R,R,z) \subseteq P$ since (a,b,z) = (z,b,a) by $0 \equiv R$.

We continue by letting $A_1 = z$,

$$A_2 = (R, R, A_1),$$

 $A_{n+1} = (R, R, A_n).$

Let $A = \bigcup A_i$. Now $A \subseteq Z$ and $A \subseteq P$; $A + AR \subseteq P$ and A + AR is a 2 ideal. Thus A = 0. So $P \cap Z = 0$. Now $[P^2, R] \subseteq Z$ and $[P^2, R] \subseteq [PR, P] \subseteq P$ by $0 \equiv G$ and (i); therefore $[P^2, R] = 0$. Thus $P^2 \in P \cap Z$ so $P^2 = 0$. Furthermore $(R, P, P) \subseteq (P, R, R) = 0$; so $RP \cdot P = 0$. Let $P_1 = P + RP + (R, R, P)$. P_1 is a right ideal since $(R, R, P)R \subseteq (R, R, R)P + (R, RR, P) + (R, PR, R)$ by $0 \equiv D \subseteq RP + (R, R, P) \subseteq P_1$. We will show $P_1^c \neq R$. $P_1^c = P_2^c + (R, R, P) = P_2^c + (R, R, P)$

$$\subseteq 0 + 0 + (R,R,P)R + (R,R,P^2) + (R,P.RP)$$
 by $0 \equiv D$

$$\subseteq (R,P,RP) \subseteq (R,P,PR) + (R,P,[R,P]) \subseteq (P,R,[R,P])$$

 $\subseteq P$ by (i) and $0 \equiv Q$.

Now $P_1^c P^c \subseteq (P_1 P)^c \subseteq P$. If $P_1^c = R$ then $RP \subseteq P$ and P is a two-sided, impossible. Thus $P_1^c \neq R$. Let us repeat this construction.

$$P_1 = (P + RP + (R,R,P))^c$$
,

$$P_2 = (P_1 + RP_1 + (R,R,P_1))^c$$

$$P_3 = (P_n + RP_n + (R,R,Pn))^c$$
.

 $P_i \neq R$ for all I, so $P_i^2 = 0$. Since $\bigcup P_i$ is a two-sided, we have $R^2 = 0$; this means $RP \subseteq P$. Therefore P is a two-ideal, contradiction. \blacklozenge

THEOREM 2: If R is a simple locally (-1,1) ring then is an associative field.

PROOF: If R has no proper ideals, by lemma (14) R has no proper fat right ideals and by Lemma (13) R is associative. The center of R is 0 or a field. $[R,R] \subseteq$ center. This implies $[x,y]^3 = 0$; hence [x,y] = 0. R must be commutative. A simple associative commutative ring is a field. \bullet

REFERENCES

- 1. Kleinfeld.E, "A Generalization of strongly (-1,1) rings", Journal of algebra 119, 218-225(1988).
- 2. Hentzel.I.R. and Smith.H.F, "Simple locally (-1,1) nil rings", Journal of algebra 262-272.Vol.101.No.1.June 1986.
- 3. Suvarna.K and Jayalakshmi.K, "A Result on prime (-1,1) rings", proceedings of international conference on advances in mathematical and computational methods (AMCM-2011), Vol.1, 44-46.
- 4. Subhashini.K, "Simplicity on Accessible and (-1,1) rings", Int.J. Contemp.Math.Sciences, 1.7,2012,no.48,2377-2381.
- 5. Subhashini.K, "Simple (1,0) rings", International Mathematical Forum, Vol. 7,2012, no. 48, 2377-2381.