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ABSTRACT 
In the present manuscript, we have considered some new non-probabilistic (fuzzy) 
measures of directed divergence, and keeping in view the importance and areas of 
applications of these measures, we have investigated their optimum values.  
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INTRODUCTION  
          The measure of distance is an important term that describes the difference between fuzzy sets 
and can be considered as a dual concept of similarity measure. Many researchers have used distance 
measure to define fuzzy entropy. Using the axiom definition of distance measure, Fan, Ma and Xie [2] 
developed some new formulas of fuzzy entropy induced by distance measure and studied some new 
properties of distance measure. Rosenfeld [10] defined the shortest distance between two fuzzy sets as 
a density function on the non - negative reals. Corresponding to the probabilistic measure of divergence 
due to Kullback and Leibler [5], Bhandari and Pal [1] introduced the following measure of fuzzy 
directed divergence: 
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(1.1) 
Corresponding to Renyi’s [9] and Havrada and Charvat’s [3] divergence measures, Kapur [4] took the 
following expressions of measures of fuzzy directed divergence: 
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(1.3)   
Tran and Duckstein [11] developed a new approach for ranking fuzzy numbers based on a distance 
measure. Parkash [6] introduced a generalized fuzzy divergence, given by 
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(1.4)                                      
Many measures of fuzzy divergence along with their detailed properties and important applications 
have been discussed by various authors including those of Kapur [4], Parkash [6], Parkash and Sharma 
[7], Parkash and Tuli [8] etc. In fact, Kapur [4] has developed many expressions for the measures of 
fuzzy directed divergence corresponding to probabilistic measures of divergence due to Harvada and 
Charvat [3], Renyi [9] etc.  

2. OPTIMIZATION OF VARIOUS MEASURES OF DIVERGENCE 
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        In this section, we consider Renyi’s [9] measure of fuzzy directed divergence given in (1.2) and 
examine it for its maximum and minimum values. 
I. Minimum values of Renyi’s [9] measure of fuzzy directed divergence 

We now find the minimum value of ( : )D A B . Since ( : )D A B  is a convex function, its minimum 

value exists. For minimum value, we put 
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Case-I. When 0k  , then  
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Case-II. When 
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Case-III. Whenk n , then  
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Illustration. To illustrate the above process, we consider   1 1 1 1
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II. Maximum values of Renyi’s [9] measure of fuzzy directed divergence 

We now find maximum value of ( : )D A B . 

Case-I: When k  is any +ve integer, then we can choose k  values of  A ix  as unity and 

others –n k  as 0, that is,    1,1,1,....,1,0,0,....,0A ix  . Now, we can write 
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Thus, the maximum value of ( : )D A B  is given as 
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Illustration. To illustrate the above process, we consider   1 1 1 1
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The above values show that . ( : )Max D A B is piecewise convex function. 

Case-II: If k  is any fraction, then, we can write k m   , where m is a +ve integer and   is a 

positive fraction. We can choose m fuzzy values of  A ix  as unity, 1 th
m  value 

 of  A ix  as   and remaining  – –1n m  values of  A ix  as 0, that is, 

   1,1,...,1, ,0,0,....,0A ix  .Thus, 
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To illustrate the above process, we consider   1 1 1 1
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We, now check the convexity of ( )  . 
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Conclusions: When  B ix  is a monotonically decreasing, the .Max  cross entropy is an increasing 

function. It can also be proved that if  B ix  is a monotonically increasing, the .Max  cross entropy 

is a decreasing function. Also in both cases,  . :MaxD A B  is a piecewise convex function of k. In 

the literature of distance measures, there exist many parametric and non-parametric measures of fuzzy 
divergence introduced by various researchers. Proceeding on similar way as done in section 2, the 
optimum values of other divergence measures can be studied. 
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