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ABSTRACT

In the present communication, we have proved some new coding theorems and consequently,
developed some new weighted fuzzy mean codeword lengths corresponding to the well-known
measures of weighted fuzzy entropy. A desirable property, that is, monotonicity of the newly devel oped
weighted fuzzy mean codeword lengths has also been studied.
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INTRODUCTION
The measure of uncertainty introduced by Shannon [11] éaeirdous applications in different disciplines. One

of its applications is the problem of efficient coding of messages sefiteover a noiseless channel, that is, our only
concern is to maximize the number of messages that can be sent wrarthel in a given time. Let us assume that the

messages to be transmitted are generated by a random vaXiabied each valuex; ,,i =1,2,...n of X must be
represented by a finite sequence of symbols chosen from tlﬁ@lsaz, . Eb} . Let n; be the length of code word

associated withx; satisfying Kraft’s [7] inequality
05N
>D <1 (1.2)
i=1

where D is the size of alphabet. In calculating the long run efficiency of aamwations, we choose codes to
minimize average code word length, given by

n
L= Y p 1.2
2 PN (12)

where Pj is the probability of occurrence ofj . For uniguely decipherabl@des, Shannon’s noiseless coding theorem
which states that
H(P H(P
(P) <L< (P) +1
log D logD

(1.3)

determines the lower and upper boundslonin terms of Shannon’s entropy. Campbell [2] for the first time introduced
the idea of exponentiated mean code word length for uniquely decadalele and proved a noiseless coding theorem.
He considered an exponentiated mean of otdedefined by

a n
L, =——7Io . D /e 14
. =1~ 190, {Zl P (1.4)
and showed that its lower bound lies betwd®y(P) and R, (P) +1 where
n
Ra(P):(l—a)_llogD Z p%;a>0,a=1 (1.5)
i=1
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Guiasu and Picard [3] defined the weighted average length for a undpepherable code as

L= Zn: t:,r]_p (1.6)

“lzun

Longo [8] interpreted (1.6) as the average cost of transmitting lexiensith probability p; and utility U; and gave

some practical interpretation of this length. Lower and upper boundkéarost function (1.6) in terms of weighted
entropy have also been derived.

Longo [8] gave lower bound for useful mean codeword lengtterims of quantitative-qualitative measure of
entropy introduced by Belis and Guiasu [1]. Guiasu and Picard [$k@ra noiseless coding theorem by obtaining
lower bounds for similar useful mean codeword length. GurdialPasdoa [4] tried to extend the theorem by finding
lower bounds for useful mean codeword lengths of omem terms of useful measures of information of ower
Some other pioneer who extended their results towards the develofdmediny theory are Koragla gnd Urbahke, [6]
[SzpankowsHi [12], Merhav [9] etc. Recently, Kapur [5] has established refaisrbetween probabilistic entropy and
coding. But there are many situations where probabilistic measures of esdrapy work and to tackle such situations,
instead of taking the idea of probability, the idea of fuzzines®eaxplored.

In the next section, we have conskldthe fuzzy distributions and develegisome new fuzzy codeword lengths by
proving noiseless coding theorems:

2.ACLASSOFFUZZY CODING THEOREM SAND CODEWORD LENGTHS
Theorem 2.1 For all uniquely decipherable codes, we have the following inequality:

H,(AW)<L,W) ;a>1 2.1)

where H_ (AW) =ﬁ Z w. [ Ha (%) + A=, (X)) —l] is a measure of weighted fuzzy entropy
a\l—-a) i-1

introduced by Parkash and Tuli [10] and

3w (1 06) (1, 6 ~1)0"

L, W)= 1= wa) 2.2)

is a new weighted parametric codeword length.
Proof: By Holder’s inequality, we have

n n p P( n q)d
Elxiylz El)i i§1¥ ;0<p<lg<OorO< g< 1,p< ( (2.3

.l

1
Settingx :[f(ﬂA(X ))] ‘D™, y, :[f (215 (% ))] and p=—t, q:ﬁ, the inequality (2.3) becomes

{i{f(u;\m»}ﬂ < i{f(uA(x))D“}}

i=1 | i=1

=}

n

i=1 i=1 i=1

N0W|:Zn:{f(/uA(Xi))}:|S {f(/,lA(Xi))}lit:| g{ {f(,UA(K))Dm}}

Thus, we have

{i{ f (m(&))}}{inl{f (an (% ))Dm}}

i=1
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_ 1 l-o :
Taking @ =——, a >1, t=——, the above equation becomes
1+t a

n

Z{f(uA(x»}z{if (1 X »D"ﬂ 2

i-1
Again taking
f(up(x)) = [WI {yA“ (X )+ @—z %)) —1}} , and multiplying the denominator byx(l— ), >1, the

inequality (2.4 proves the theorem.
Theorem 2.2 For all uniquely decipherable codes, the following relation holds:

H*(AW)<L*W) ;a>1 (2.5) with
D"
equality iff z,(X)= ———

2, b7
j=1

(L ()]
n " D—n
wherel” (W) = z log| DY W4 - — (2.6)
i=1 D*”j
j=1
is the new weighted fuzzy codeword length and
He(AW) ==>" wi [ 5 (x)10g s, 05 )+ (- (5 ) log(l s, & )] > 3 (2.7)

i=1
is a new measure of weighted fuzzy entropy.
Proof. We have introduced the following generalized weighted measure of fumagence:

C « (%) a (1_/1A()§))
D,(ABW)= > w| 1,“(x )log +(1- 2, (%)) log——mm—= (2.8)
( )= 2 {A( ) #5(X) (14 05) (1= (%))
Now, since equation (2.8) represents a measure of distance, it mdgttbatfellowing inequality:
3 a uA()ﬂ) « (1_’UA()§))
W | 1,” (% )log +(1- 4, (%)) log———= (>0 (2.9)
2 {A( o8 (x) e (1) (1= 21a(%))
D™
Taking g (%) = — , 1<i <n, inequality (2.9) becomes
> D"
j=1
. n " ~ n n n . D—r\
H (A,W)S—ZvviuA(x){logD “—Iog[z D H— W (- 1, (%)) log| 1-—; (2.10)
i=1 j=1 i=1 Z D"

j=1

where H” (AW) ==Y w,[ 25 (¢)10g 5 (5 ) + (L, 6 ) logll— s, & )]z > 1

Using Kraft’s (1949) inequality, inequality (2.)@roves the theorem.

In the next section, we have studied the monotonicity of the newstraated codeword lengths.
3. MONOTONICITY OF THE CODEWORD LENGTHS
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Here, we discuss the monotonicity of the following codeword lengths:

I. Monotonicity of L* (W)
We have developed the codeword length which can be rewritten as

n n D—r’ﬁ
L“W) = D nwug ()logD - w (1 u, ()Y logy I- —— (3.1)
i=1 i=1 D—nj
j=1

Differentiating equation (3.1) w.r.tz , we get

L W)= Y n, wlog Dy (5)logus (5)+ 3 W (L s, & )Y log(k- 1, & Do p D
o i-1 i-1 z D"

j=1
3.2
Clearly, the R.H.S. of (3.2) consists of two terms and both tareas/e. Hence, we must have
0

" L* (W) < O which shows thal” (W) is a monotonically decreasing function @f.
a

Next, with the help of the data, we have presented the weighted codewadhd l€fgV) graphically. For this purpose,
we have computed different values bf (W) for different values of the parameter , corresponding to different
fuzzy vaIuesuA(Xi) under the weighted distributio/ = { 2,3,4,5}. Next, we have presentetl” W) graphically

and obtained the Fig.-3.1 which clearly shows that the codeword ldfdiV) is monotonically decreasing function
of .

La(w)

O =~ N W hH o N ®©®©O© O

I1. Monotonicity of L, (W)
We have developed the weighted codeword length in equation (2.2) giéch

a’(l-a)’ —dLégN)

i=1

=o{ w15 05)100 1 06 )+ (L4, 66 ))" Toa( B 6 )™ + 4" 6 W (g & ) - 1}}
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S w {06 + (1 1, 01))° J}D ogor
—(l-a)=

a(l-a)

n V\/i{ﬂZ(XH(l—ﬂA(X))a—]}Dq[l

—all—a )= 3.3
a(l-a) a(l-a) 53

The equation (3.3) consists of three terms. Obviously, the llddld terms are negative. Now, we discuss the sign of
Ist term:

i=1

n
Ist term can be written ag {ZWI F (X)}

whereF (%) = (X" = X Hog X 1)+ (1= X)[ (1= Xy '~ (= xJ *log (- xJ '] - < 0
as u-ulogk .
Thus, we have- (z£,(%)) <0

Since,W, > 0 and @ > 1, we see that the first term 0

L, (W)

Thus, equation (3.3) glves— <0,a>1.

So L, (W) is monotonically decreasing functionaf

Next, we have presented., (W) graphicallyand obtained the Fig.-3.2 which clearly shows that the codewagthlen

L, (W) is monotonically decreasing function af .
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