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ABSTRACT 

 In the present communication, we have proved some new coding theorems and consequently, 
developed some new weighted fuzzy mean codeword lengths corresponding to the well-known 
measures of weighted fuzzy entropy. A desirable property, that is, monotonicity of the newly developed 
weighted fuzzy mean codeword lengths has also been studied.  
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INTRODUCTION  

        The measure of uncertainty introduced by Shannon [11] has tremendous applications in different disciplines. One 
of its applications is the problem of efficient coding of messages to be sent over a noiseless channel, that is, our only 
concern is to maximize the number of messages that can be sent over the channel in a given time. Let us assume that the 

messages to be transmitted are generated by a random variable X  and each value ix ,, 1,2,...,  of Xi n  must be 

represented by a finite sequence of symbols chosen from the set 1 2{ , , ..., }Da a a . Let in  be the length of code word 

associated with ix  satisfying Kraft’s [7] inequality 

   1
1

n niD
i





                                                                                        (1.1) 

where D  is the size of alphabet. In calculating the long run efficiency of communications, we choose codes to 
minimize average code word length, given by 

   
1

n
L p ni ii
 


                                                                                       (1.2) 

where ip  is the probability of occurrence of ix . For uniquely decipherable codes, Shannon’s noiseless coding theorem 

which states that 
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determines the lower and upper bounds on L  in terms of Shannon’s entropy. Campbell [2] for the first time introduced 
the idea of exponentiated mean code word length for uniquely decodable codes and proved a noiseless coding theorem. 
He considered an exponentiated mean of order   defined by 
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and showed that its lower bound lies between ( )R P  and ( ) 1R P   where 
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Guiasu and Picard [3] defined the weighted average length for a uniquely decipherable code as 
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                                                                                (1.6) 

Longo [8] interpreted (1.6) as the average cost of transmitting letters ix  with probability ip  and utility iu  and gave 

some practical interpretation of this length. Lower and upper bounds for the cost function (1.6) in terms of weighted 
entropy have also been derived.  

        Longo [8] gave lower bound for useful mean codeword length in terms of quantitative-qualitative measure of 
entropy introduced by Belis and Guiasu [1]. Guiasu and Picard [3] proved a noiseless coding theorem by obtaining 
lower bounds for similar useful mean codeword length. Gurdial and Pessoa [4] tried to extend the theorem by finding 
lower bounds for useful mean codeword lengths of order   in terms of useful measures of information of order . 
Some other pioneer who extended their results towards the development of coding theory are Korada and Urbanke [6], 
Szpankowski [12], Merhav [9] etc. Recently, Kapur [5] has established relationships between probabilistic entropy and 
coding. But there are many situations where probabilistic measures of entropy do not work and to tackle such situations, 
instead of taking the idea of probability, the idea of fuzziness can be explored. 

       In the next section, we have considered the fuzzy distributions and developed some new fuzzy codeword lengths by 
proving noiseless coding theorems: 

2. A CLASS OF FUZZY CODING THEOREMS AND CODEWORD LENGTHS 
Theorem 2.1 For all uniquely decipherable codes, we have the following inequality: 
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        is a measure of weighted fuzzy entropy 

introduced by Parkash and Tuli [10] and  
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is a new weighted parametric codeword length. 
Proof: By Holder’s inequality, we have 
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Thus, we have 
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Taking   
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 , the above equation becomes 
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Again taking  

 ( ( )) ( ) (1 ( )) 1A i i A i A if x w x x         , and multiplying the denominator by 1),1(   , the 

inequality (2.4) proves the theorem. 

Theorem 2.2 For all uniquely decipherable codes, the following relation holds: 
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is the new weighted fuzzy codeword length and 
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is a new measure of weighted fuzzy entropy. 

Proof. We have introduced the following generalized weighted measure of fuzzy divergence: 
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Now, since equation (2.8) represents a measure of distance, it must satisfy the following inequality: 
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Taking ( )B ix
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 (2.10)                      

where 
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Using Kraft’s (1949) inequality, inequality (2.10) proves the theorem. 

In the next section, we have studied the monotonicity of the newly constructed codeword lengths. 

3. MONOTONICITY OF THE CODEWORD LENGTHS 
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Here, we discuss the monotonicity of the following codeword lengths: 

I. Monotonicity of ( )L W  

We have developed the codeword length which can be rewritten as 
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Differentiating equation (3.1) w.r.t.  , we get 
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Clearly, the R.H.S. of (3.2) consists of two terms and both terms are –ve. Hence, we must have  

( ) 0L W







 which shows that ( )L W  is a monotonically decreasing function of  .  

Next, with the help of the data, we have presented the weighted codeword length ( )L W  graphically. For this purpose, 

we have computed different values of ( )L W  for different values of the parameter  , corresponding to different 

fuzzy values ( )iA x  under the weighted distribution  5,4,3,2W . Next, we have presented  ( )L W  graphically 

and obtained the Fig.-3.1 which clearly shows that the codeword length ( )L W  is monotonically decreasing function 

of  .  
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Fig.-3.1 

II. Monotonicity of ( )L W  

We have developed the weighted codeword length in equation (2.2) which gives 
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The equation (3.3) consists of three terms. Obviously, the IInd and IIIrd terms are negative. Now, we discuss the sign of 
Ist term: 

Ist term can be written as
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Thus, equation (3.3) gives
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So ( )L W  is monotonically decreasing function of .  

Next, we have presented   WL  graphically and obtained the Fig.-3.2 which clearly shows that the codeword length 

 WL  is monotonically decreasing function of  .  
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Fig.-3.2 
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