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Abstract

If Y and Z dimension of a three dimensional plane, be taken as summation of even amount of
electric charges as planes Y+Z= 4 then the storage of electrostatic charges bounded by the
cylinder X?+Y?= 4 at Z=0, will remain unaltered by the amount of electric charges and the
The storage charges will be consumed by the dtatistical electrons of the solid cylinder.
Charges consume as fuel to maintain the potential and kinetic energy. Nature of eectric
chargeisneither like a gas nor likeliquid. It means chargeis of Non-fluid nature.
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I ntroduction:

According to the established perception in the case of electrostatistic, electransercthe surface of
material when they are rubbed by some other matérial.

Now imagine a small sphere charged with positive electricity and suspepdeadrsulating thread. It
produces an electric field in space all around it. If we bring a sectwedespuspended by an insulating thread
charged with negative electricity near it, the second sphere will be actgdancd that urges it to move
towards the positively charged sphere. We say the electric field cautiesl fysitively charged sphere exerts a
force on the negatively charged sphere in a manner similar to the efctiengravitational field on the object
held in hand2 If the second sphere is also positively charged, the electric field will ef@eathat urges it to
move away from the first sphere. It is also true that the second spbdte@ian electric field of its own, and it
is correct to say that its field exerts a force on the first sphere.drbes il urge the first sphere to move
towards second sphere if second sphere is negatively chargedantbewthe second sphere, then we find
that the space around a charge is always under stress, and experngoeen &nother charge when placed
there.3 The stress in the space is represented by the lines of force whichaarated from positive charge and
end on negative charge. The lines of force of same direction repel eachuitlines of force of opposite
direction attract each othet.The direction of the line of force at any point is the direction of mevemf a
unit positive charge placed at that point if made to move fréélyey are always normal to the surface of the
body from where they originate or terminate.

Charges which are free to move within a given substance(such as atoondander the action of an
applied electric field, are not held from doing so by intermolecular foacesalled free chargés.

Conversely, bound charges (predominately in dielectrics) are those whilkhldrfast in their position
by molecular forces and so they don’t move under the action of an applied electric filed. In a given substance the
number of positive bound charges is equal to that of negative burgeshar

If a slab of dielectric be placed in an electrostatic field, it will go under polarizatiaoh is defined
as a definite orientation of bound charges in a material because of applied electricTfiefdorientation
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manifests itself as the displacement of negative bound charges towardh#repbitgntial and of positive
bound charges towards the lower potential. The charges as displaced so ttietttioé &pplied electric field is
balanced by the effect of molecular force. As a result of polarization, laamges expose themselves, as it
were, on the material surfacg.

Field dueto a charged sphere;

Consider a uniformly charged sphere of radii r meters and having@eabfa® coulombs placed in a
medium of relative permedlty ¢,. Let the electric intensity be determined at a point P-(i)lying outside the
sphere and (ii)lying inside the sphere.

(i)When the point P isoutside the sphere. Let the distance of point P from the center of the sphere be d
meters. Consider a sphere passing through point P concentriti@ithdarged sphere, as depicted in figure
given below:9
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By Gauss’s theorem electric flux crossing the sphere passing through point P.
Y = charge enclosed by it = Q coulombs (D)
Also , electric flux crossing the sphere at point P
Y = flux density X area

= D x 4A1d? = g6, E x A1d? (i)
Where E is electric intensity at point P
Comparing Egs.(i) and (ii) we have

Q = e E x 41d?

Or E = Q/41 g, d° newtons/coulomb
Thus, the electric intensity at a point outside the sphere is the santkeashiirge on the sphere were
concentrated at the center of the sphere.
(iWhen the point P isinside the sphere. Let the point P be at a distance of d meters from the center of the
charged sphere (d<r). Consider a sphere passing through point Rtdonveith the charged sphere as depicted
in given figure.

By Gauss’s theorem,
Electric flux crossing the dotted sphere passing through point P,
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Y = charge enclosed by the dotted sphere =0 (i)
Also, electric flux crossing the sphere at point P,

Y = g6, E A1d? ....(iD)
Comparing Egs.(i) and (ii) we have

E=0

i.e. electric intensity at a point inside the charged sphere is zero.
Potential Gradient:

Practically the electric field intensity is not uniform, but varies from poipbtat. Let us consider that
the electric filed intensity between two points separated by a very small digdgisceonstant and let it be E.
The work done in moving unit +ve charge from one point to the oth#raugradient of potential is E ds and
therefore, potential difference dV is given as:

dV = -E ds (minus sign is used because of work is being aligaiest the force

due to electric field)
or E = -dV/ds = -g, potential gradient

Hence electric field intensity at any point is equal to the negative potential gradiemit @oint.
Potential at a Point:

Let us consider a positive charge of one coulomb at a distance of s mutethd charge of Q
coulombs placed in air. The force acting on this unit +ve charge is bive

E=QMle &
Work done in moving this positive charge of one coulomb towarlshhrge of Q coulombs through a distance
d
dw = E(-ds) = Q/H &, S x (-ds)
The negative sign is taken because ds is considered along the negatitierdof s.
Total work done in bringing the +ve charge of one coulomb frdimity to any point, S meters from the charge
of Q coulombs is given by:
S S
W=]-Eds =JQ/dlle, Sds=Q/4l e, S
o0 o0

By definition, potential at any point

V = the work done in bringing a +ve charge of one coulomb fromiipfio that

point
= Q/4 g, S = 9 x 18 Q/S volts in air

And V = Q/4le,e S=9x18Q/ ¢ S volts in medium of relative permittivity &,
Potential at a point due to number of charges

As already proved, the potential at any point at a distance of S meters érohathje of Q coulombs is
given by:
V=9x10Q/¢ S
Similarly the potential at any point due to number of charges Q1, Q2, Q&cQdlaced at distances S1, S2, S3,
S4 etc. respectively from it is given as:
V=9x10 Q/&[Q1/S1 + Q2/S2 + Q3/S3 + Q4/S4....... ]
Potential at a charged sphere:

To determine the potential at any point outside the sphere, the chargelshasklimed to be
concentrated at the center of it.

127



Dr. Shobha Lal & Rajesh Saxena

Therefore, the potential at a point, S meters from the center of the sphagethawcharge Q
coulombs

=Q/4IT &, S =9 x 16 Q/S volts
To determine the potential at the surface of sphere of radius r mdistisida S=r in above expression for
potential,

Therefore, potential at the surface of sphere of radius r meters and ognsistharge Q,
V=Q/4Il g r =9 x 18 Q/r volts
Capacitance of a Cylindrical Capacitor:

The cable can be considered to be two coaxial cylinders of inner diahatdrouter diameter D. In
actual cable, d represents the diameter of core and D represents the inner didlemdesheath which is at
earth potential. Let the relative permittivity of dielectric in between the core and sheath be ;.10

Let the charge per meter length of the cable on the outer surface ofg¢h®eceQ coulombs and on the
inner surface of the lead sheathH6g coulombs. For all practical purposes, the charge of +Q coulombs/m on the
surface of the core can be assumed to be located along its axis. The métabstathed.
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Surface area of the coaxial cylinder of radius x meters and lengtheaieeis
21x m?.

Therefore, electric field intensity at a point x meters from the center of thedgiinder,
E, = Q211 g5 & x = Q/2I1 g & 1/x VIM
Potential difference between the capacitor plafefhetween core and sheath)

D/2 D/2
V=]Edx =] Q2 gy 1/x dx = Q/2II &, ¢ loge D/d volts
dr2 dr2

capacitance of cable,
C=Q/V=Q/Q/2I1 g, & log, D/d F/m
=211 &, &/ loge D/d = 211 x 8.854 x 10™?¢,/ 2.303 log, D/d

= ¢,10°/ 41.4 log, D/d F/m 0r0.024 ¢,/ logy, D/d pF/km
/__\\\

In case of capacitor having compound dielectric, the expression for capadietomed?2
C =2I1 &,/Y, log, D/d/ & F/m
Potential Gradient in the Cable:

128



Non-Effecteness of Volume by Storage of Electrostatistic char ges

Since cable is a form of cylindrical condenser, electric intensity at a distdrora the center O of the
cable is given by (as determined in foregoing article) the equi3ion

E, = Q211 g, ¢, 1/x VIm
Since potential gradient = Electric intensity,
g=Q/2I1 &, & 1/x VIm ..()
From above article
V= Q/2I1 &, ¢ loge D/d
Or Q=2II¢g,¢ V/loge D/d ...(i1)
Substituting the value of Q from Eq. (ii) in Eq. (i) we have
g=2I1¢,¢ V/logeD/d . 17211 g4 &, . 1/x = VIx log, D/d volts/meters
Since potential gradient g varies inversely as x (as obvious from the abogeséap), potential gradient will
be maximum when x is minimuf# i.e., X = d/2 and potential gradient will be minimum when x is maximum
i.e. x=D/2.
Maximum and minimum values of potential gradient are given by
Omax = 2V/d log. D/d volts/meter
And  gnin = 2V/D log D/d volts/meter
Conclusion:
Let consider a surface z = f(x,y). Let the orthogonal projectioi\oiplane of its portion S™ be the
area S.

Divide S into elementary rectangles of area dx dy by drawing lines parallel to X and Y axes with each
of these rectangles as base, erect a prism having its length parallel to OZ.
Therefore, volume of this prism between S and the given surfaég/)is z 5x dy.
Hence the volume of the solid cylinder on S as base, bounded by¢hesgiface with generators parallel to
the Z-axis.
=Lt. Y'Y 7 dx dy
ox —p0
Sy—p- 0
=[[zdxdy or [[f(x,y)dxdy
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Where the integration is carried over the area S.

Now the volume bounded by the cylindériy? = 4 and the plane y + z = 4 and z = 0. From figure (ii), it is
self— evident that z = 4-y is to be integrated over the circle y¢ = 4 in the XY- plane. To cover the shaded
half of the circle, x varies from 0 to  (4-y?) and y varies from -2 to 2

Therefore , required volume
2 V@)
=2[ | zdx dy
2 0
2 V@)
=2[ [ (4-y)dx dy
2 0
2
=2f @y ' dy
-2 0
2
=2[ (@-y)V @y’ dy
-2
2 2
=2[ 4 (4-y?) dy - 2[ y V (4-y?) dy
-2 -2
2
= 8]  (4-y?) dy [ The second term vanishes as the integrand is an odd fjnctio
-2
2
=8| yV (4-yAI2 + 4/2sinty/l2| = 1611
-2

Hence, non- effeteness of volume by storage of electrostatistic charge and otherscharge
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