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Abstract: In this article, we determine the degree of approximation of 27 -conjugate periodic signal in
the L, and Lip(a, p) -classes by deferred Cesaro transform.

1. Definitions and Notations: Lets ()€ L, [O,Zﬂ] be a 27 - periodic signal and let its Fourier
trigonometric series be given by

1 - . -

s(t)~ EaO+Z(an cosnt+b,sinnt)=>" A (t), (1.1)
n=1 n=0

and let the conjugate Fourier trigonometric series corresponding to (1.1) is given by

S - i(ansin nt—b, cosnt)ziBn(t), (1.2)

n=1 n=0

Let n" partial sums of (1.1) and (1.2) be given by S, (t)and S, (t) , respectively.

Let {pn } and { q, } be sequences of non-negative integers satisfying the followings

p,<0,, and limqg,=o0. (1.3)
The processor
1 An
D, (s,)= > s, (14)
qn - pn k=p,

defines the deferred Cesaro - transform D(pn,qn) ( [1], also see [3] ). It is known [1] that
D(pn,qn)is regular under conditions (1.3). Note that D(O,n) is the (C, 1) transform with the
assumption that {/ln} be a monotone non —decreasing sequence of positive integers such that
A =land A,,,— A4, <1, then D(n — Ay n) is same as the N" generalized de la Vallée Poussin
processor, generated by the sequence {xln }[6].

The space Lp[0,27r], for p = oincludes the spaces of C,_of all continuous signals defined over
[0.27] (p. 45, 8)).

We write

w(5,s)=Sup| s(t+h)-s(t)], (15)

0<h<é
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o ,(3,s) Sup || s(t+h)- || (1.6)

which are respectlvely, called the modulus of continuity and the integral modulus of
continuity. In particular when @), ((5; S)zO(é'“ ), (O <a< 1), thenw, (5 ; S) reduces to

Lip(a, p). We shall use following notations.
~ 1% t
5.(t,)= 5!% (t)cotE dt, (1.7)
w, (t)=5(t +t)-5(, -t). (1.8)

2. Known results: Singh and Mahajan [7] established following theorems in Lp and

Lip(a, p)—norms by (C,1)(E,1)-transform.

Theorem A. Let S € L, (p > 1) be a periodic signal and let @, (S;t) satisfies the following condition
Zw,(5;u)
p
t u
where Ht) T and H(t) >0, then we have

TE:0)-5] - o(% H (%D 22

Theorem B.Let S € Lip(a, p), O<a <1 p>1, then we have

3 o) oO<a<1
n('s“;t)—'s”Hp: O(Mj el (2.3)

n
Theorem C. Let S € Lip(a, p), O<a<lp>laop>1

il
t.(5;t)-5]=0(n * ). (2.4)

3. Main results: The object of this paper is to extend the above results for deferred Cesaro — transform.
We shall prove following:

Theorem1. Let S € L, (p > 1) be a periodic signal and let @, (S;t) satisfies the follow -

ing condition
o (3;u
Ipﬁ—z)du:O(H(t)), 3.1)
t
where H(t) T and H(t) >0, then we have
[5,.)-5.(t)] =0f(z/2(a,~ b, )H(z/2a, - )} @2

Theorem 2. Let S € Lip(a, p), 0<a <1 p>1, then we have
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5. (5 )-3 _ O{(qn—pn)w}, O<a<l
n n) 2t(t1)Hp {O{log(qn—pn)/(qn—pn)}, ool (3.3)

Theorem 3. Let § e Lip(er, p), 0<a <l p>1ap>1,
B, 5,)-3. (t.)-0f@, = p, )"} @9

4. Lemmas. We shall use the following lemmas.
Lemmal.([4],p.148). If h(x,t) is a function of two variables defined for 0 <t < 7,0 < X< 27, then

esy dt”ps [In(x.t)dt  (p>1).

Lemma 2. ([5], Theorem 5(ii)). Let S(t)e Lip(a, p),O <a<l p>Lloap>1then s(t) is
1

. 1
equivalent to a function g € Llp(a - —] and #(t) = O(t p] almost everywhere.
P

Lemma 3. [2]. If (3.1) hold, then

®,(5;t)=0(tH(t))

Proof of theorem 1. Following Zygmund [8], we have

~ ~ _ 1 f l//tl
D,(5,) -5(t)= @ p )72"[28In 022 Zcos (k +(1/2)k dt

j ] Wt1() sin cos(k +
@ P G > 2sinly/2)eoslk +(y ) o

-p, )7rT 23[1:1 (2 S+ Pe +DI2KING, = o + Dl 2)e

~ ~ B 1 2 l//tl(t)
Dn(sn) — Sy (tl)_ - G, - )7 1 j (25in(t/2))2
v, (2t)
(sint)?
/2 7/2(dy=Pn) /2
I: J. + I =1, +1, say

0 0 ”/Z(qn’pn)
Applying the Minkowski inequality to the right side of (5.1), we get

cos@, + p, +1)(t/2)sin(a, - p, +D(t/2)dt

-~ N 1 /2
Dn(sn) _SZt(tljS (qn _ pn) ‘!.

Now, writing,

|cos(q, + p, +Dtsin(a, — p, +t[dt. (5.1)

D.(8) ~Sult)] <[, + I, (5.2)

vy (ZtX
I (9%

0

”/z(qn —Pn )

cos@, + p, +Dtsin(g, — p, +tdt

(qn p)

p

1 7/2(dy=Pn) ‘

Vi (Zd‘
(qn - pn) 0 (t)2

p

o

cos@, + p, +1)tsin(a, — p, +1| dt
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We note that

|, (2t)] , = Olo, (5:1)},
thus

=0(1) j dt
= O{(z/2(a, - p, )H(z/2(a, - p,))}- (5.3)
Again using Lemma 3,
1 7w, (55t)
20, = Y/ —— d
I ”p o0 (a, - pn)zr/Z(qJ,:pn) t t
=0{(z/2(a, - p,)H(z/2(a, - p,))}. (5.4)

Combining (5.3) and (5.4), we get (3.2).
This completes the proof of Theorem 1.

Proof of theorem 2. Since S € Lip (a, p), O<a<l, p>1, therefore
o, (§;t)=0(t“) , and

u-* , O<ax<l

set H(u)= 1 5.5
(u) ogl,  a-1, (55)
u
then by Theorem 1, we get (3.3).
This completes the proof of Theorem 1.

Proof of theorem 3. We have from the proof of Theorem 1 and Lemma 2

1 7/2(dy~Py) a—i—l

[L|=0@—— [ t ° (q,-p,)dt
n n 0
—0l(, - p,)“" ). (556)

Again from Lemma 2,

1,|=0@) 1 ft““/p)z dt

n N pn ”/Z(qn_pn)

—a+(p)
:O((qn —p,) TP ) . (.7)
Combining (5.6) and (5.7), we get, (3.4)
This completes the proof of Theorem 3.

6. Corollaries: If we putg,=nand p,=n—A,, then deferred Cesaro - transform reduces to

n" generalized de la Vallée Poussin means Vn(ﬁ)then from Theorem 1,2 and 3, we get following
respectively:
Corollaryl. Let S € L, (p > 1)be a periodic signal and let @, (S;t) satisfies (3.1), then
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Va5, )-82 (0], =Oi(z/24, H(7/24, );

Corollary 2 .Let S Lip(a, p), 0<a <1, p>1, then we have

”v”(gn)_gh(tl)”p:{o O{(ﬁn)‘“}’ O<axl |

flog(2,)/2,} a=1.
Corollary3. Let S € Lip(a, p), O<a<lp>lLap>1,

VoG5, )-8, )] =0f(2,) =},
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