American Journal of Mathematics and Sciences Vol. 4, No.1- 2, (January-December, 2015) Copyright © Mind Reader Publications ISSN No: 2250-3102 www.journalshub.com

Approximation of signal in the L_p **and** $Lip(\alpha, p)$ -classes by Deferred Cesàro transform

Om Prakash Chauhan^{1,*}, Pravin Mahajan², Gopal Meena¹, Vishal Joshi¹, Ashit Shukla¹

¹Department of Applied Mathematics, Jabalpur Engineering College, Jabalpur-482011, India. ²Department of Mathematics, Shreejee Institute of Technology and Management, Khargone, India.

Abstract: In this article, we determine the degree of approximation of 2π -conjugate periodic signal in the L_p and $Lip(\alpha, p)$ -classes by deferred Cesàro transform.

1. Definitions and Notations: Let s (t) $\in L_p[0,2\pi]$ be a 2π - periodic signal and let its Fourier trigonometric series be given by

$$s(t) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) \equiv \sum_{n=0}^{\infty} A_n(t),$$
 (1.1)

and let the conjugate Fourier trigonometric series corresponding to (1.1) is given by

$$\widetilde{s} \sim \sum_{n=1}^{\infty} \left(a_n \sin nt - b_n \cos nt \right) \equiv \sum_{n=0}^{\infty} B_n(t), \qquad (1.2)$$

Let n^{th} partial sums of (1.1) and (1.2) be given by $s_n(t)$ and $\tilde{s}_n(t)$, respectively.

Let $\{p_n\}$ and $\{q_n\}$ be sequences of non-negative integers satisfying the followings

$$p_n < q_n$$
, and $\lim_{n \to \infty} q_n = \infty$. (1.3)

The processor

$$D_n(s_n) = \frac{1}{q_n - p_n} \sum_{k=p_n}^{q_n} s_k(t), \qquad (1.4)$$

defines the deferred Cesàro - transform $D(p_n, q_n)$ ([1], also see [3]). It is known [1] that $D(p_n, q_n)$ is regular under conditions (1.3). Note that D(0, n) is the (C, 1) transform with the assumption that $\{\lambda_n\}$ be a monotone non –decreasing sequence of positive integers such that $\lambda_1 = 1$ and $\lambda_{n+1} - \lambda_n \leq 1$, then $D(n - \lambda_n, n)$ is same as the n^{th} generalized de la Vallée Poussin processor, generated by the sequence $\{\lambda_n\}$ [6].

The space $L_p[0,2\pi]$, for $p = \infty$ includes the spaces of $C_{2\pi}$ of all continuous signals defined over $[0,2\pi]$ (p. 45, [8]). We write

$$\omega(\delta, s) = \sup_{0 \le h \le \delta} |s(t+h) - s(t)|, \qquad (1.5)$$

-----* Corresponding

author

E-mail address: chauhaan.op@gmail.com

$$\omega_{p}(\delta,s) = \sup_{0 \le h \le \delta} \left\| s(t+h) - s(t) \right\|_{p}, \qquad (1.6)$$

which are respectively, called the modulus of continuity and the integral modulus of continuity. In particular when $\omega_p(\delta;s) = O(\delta^{\alpha}), (0 < \alpha \le 1)$, then $\omega_p(\delta;s)$ reduces to $Lip(\alpha, p)$. We shall use following notations.

$$\widetilde{s}_{t}(t_{1}) = \frac{1}{2\pi} \int_{0}^{\pi} \psi_{t_{1}}(t) \cot \frac{t}{2} dt, \qquad (1.7)$$

$$\psi_{t_1}(t) = \widetilde{s}(t_1 + t) - \widetilde{s}(t_1 - t).$$
(1.8)

2. Known results: Singh and Mahajan [7] established following theorems in L_p and $Lip(\alpha, p)$ -norms by (C,1)(E,1)-transform.

Theorem A. Let $\tilde{s} \in L_p(p > 1)$ be a periodic signal and let $\omega_p(s; t)$ satisfies the following condition

$$\int_{t}^{\pi} \frac{\omega_{p}(\tilde{s};u)}{u^{2}} du = O(H(t)), \qquad (2.1)$$

where $H(t) \uparrow$ and $H(t) \ge 0$, then we have

$$\left\|\widetilde{t}_{n}(\widetilde{s};t)-\widetilde{s}\right\|_{p}=O\left(\frac{1}{n}H\left(\frac{\pi}{n}\right)\right).$$
(2.2)

Theorem B. Let $\tilde{s} \in Lip(\alpha, p), 0 < \alpha \le 1, p > 1$, then we have

$$\left\|\widetilde{t}_{n}(\widetilde{s};t)-\widetilde{s}\right\|_{p} = \begin{cases} O(n^{-\alpha}), & 0 < \alpha < 1\\ O\left(\frac{\log n}{n}\right), & \alpha = 1. \end{cases}$$
(2.3)

Theorem C. Let $\tilde{s} \in Lip(\alpha, p), 0 < \alpha \le 1, p > 1, \alpha p > 1$,

$$\left|\widetilde{t}_{n}(\widetilde{s};t) - \widetilde{s}\right| = O(n^{-\alpha + \frac{1}{p}}).$$
(2.4)

3. Main results: The object of this paper is to extend the above results for deferred Cesàro – transform. We shall prove following:

Theorem 1. Let $\tilde{s} \in L_p(p > 1)$ be a periodic signal and let $\omega_p(s;t)$ satisfies the follow - ing condition

$$\int_{t}^{\pi/2} \frac{\omega_p(\tilde{s};u)}{u^2} du = O(H(t)), \qquad (3.1)$$

where $H(t) \uparrow$ and $H(t) \ge 0$, then we have

$$\widetilde{D}_{n}(\widetilde{s}_{n}) - \widetilde{s}_{2t}(t_{1}) \Big\|_{p} = O\{(\pi/2(q_{n} - p_{n}))H(\pi/2(q_{n} - p_{n}))\}.$$
(3.2)

Theorem 2. Let $\tilde{s} \in Lip(\alpha, p), 0 < \alpha \le 1, p > 1$, then we have

Approximation of signal in the L_p ...

$$\left\| \widetilde{D}_{n}(\widetilde{s}_{n}) - \widetilde{s}_{2t}(t_{1}) \right\|_{p} = \begin{cases} O\{(q_{n} - p_{n})^{-\alpha}\}, & 0 < \alpha < 1\\ O\{\log(q_{n} - p_{n})/(q_{n} - p_{n})\}, & \alpha = 1. \end{cases}$$
(3.3)

Theorem 3. Let $\tilde{s} \in Lip(\alpha, p), 0 < \alpha \le 1, p > 1, \alpha p > 1$,

$$\left|\widetilde{D}_{n}(\widetilde{s}_{n})-\widetilde{s}_{2t}(t_{1})\right|=O\left|\left(q_{n}-p_{n}\right)^{-\alpha+(1/p)}\right|.$$
(3.4)

4. Lemmas. We shall use the following lemmas.

Lemma1.([4],p.148). If h(x,t) is a function of two variables defined for $0 \le t \le \pi$, $0 \le x \le 2\pi$, then

$$\left\|\int h(x,t)\,dt\right\|_p \leq \int \left\|h(x,t)\right\|\,dt \qquad (p>1).$$

Lemma 2. ([5], Theorem 5(ii)). Let $s(t) \in Lip(\alpha, p), 0 < \alpha \le 1, p > 1, \alpha p > 1$, then s(t) is equivalent to a function $g \in Lip(\alpha - \frac{1}{p})$ and $\phi(t) = O(t^{\alpha - \frac{1}{p}})$ almost everywhere.

Lemma 3. [2]. If (3.1) hold, then

$$\omega_{p}(\tilde{s};t) = O(tH(t))$$

Proof of theorem 1. Following Zygmund [8], we have

$$\widetilde{D}_{n}(\widetilde{s}_{n}) - \widetilde{s}_{t}(t_{1}) = -\frac{1}{(q_{n} - p_{n})\pi} \int_{0}^{\pi} \frac{\psi_{t_{1}}(t)}{2\sin(t/2)} \sum_{k=p_{n}}^{q_{n}} \cos(k + (1/2))t \ dt$$
$$= -\frac{1}{(q_{n} - p_{n})\pi} \int_{0}^{\pi} \frac{\psi_{t_{1}}(t)}{(2\sin(t/2))^{2}} \sum_{k=p_{n}}^{q_{n}} 2\sin(t/2)\cos(k + (1/2))t \ dt$$

$$= -\frac{1}{(q_n - p_n)\pi} \int_0^{\pi} \frac{\psi_{t_1}(t)}{(2\sin(t/2))^2} \cos(q_n + p_n + 1)(t/2) \sin(q_n - p_n + 1)(t/2) dt$$

$$(\tilde{s}_n) - \tilde{s}_{2t}(t_1) = -\frac{1}{(q_n - p_n)\pi} \int_0^{\pi/2} \frac{\psi_{t_1}(t)}{(2\sin(t/2))^2} \cos(q_n + p_n + 1)(t/2) \sin(q_n - p_n + 1)(t/2) dt$$

$$\left| \widetilde{D}_{n}(\widetilde{s}_{n}) - \widetilde{s}_{2t}(t_{1}) \right| \leq \frac{1}{(q_{n} - p_{n})} \int_{0}^{\pi/2} \frac{\left| \psi_{t_{1}}(2t) \right|}{(\sin t)^{2}} \left| \cos(q_{n} + p_{n} + 1)t \sin(q_{n} - p_{n} + 1)t \right| dt. \quad (5.1)$$
Now, writing

Now, writing,

 \widetilde{D}_n

$$\int_{0}^{\pi/2} = \int_{0}^{\pi/2(q_n - p_n)} + \int_{\pi/2(q_n - p_n)}^{\pi/2} = I_1 + I_2 , say$$

Applying the Minkowski inequality to the right side of (5.1), we get

$$\left\| \widetilde{D}_{n}(\widetilde{s}_{n}) - \widetilde{s}_{2t}(t_{1}) \right\|_{p} \leq \left\| I_{1} \right\|_{p} + \left\| I_{2} \right\|_{p},$$

$$\left\| I_{1} \right\| \leq \frac{1}{(q_{n} - p_{n})} \left\| \int_{0}^{\pi/2(q_{n} - p_{n})} \frac{\left| \psi_{t_{1}}(2t) \right|}{(t)^{2}} \cos(q_{n} + p_{n} + 1)t \sin(q_{n} - p_{n} + 1)t dt \right\|_{p}$$
(5.2)

$$=O(1)\frac{1}{(q_n-p_n)}\int_{0}^{\pi/2(q_n-p_n)}\frac{\left\|\psi_{t_1}(2t)\right\|_{p}}{(t)^2}\left|\cos(q_n+p_n+1)t\sin(q_n-p_n+1)t\right|dt$$

We note that

thus

$$|\Psi_{t_1}(2t)||_p = O\{\omega_p(\tilde{s};t)\},\$$

$$\|I_1\|_p = O(1) \frac{1}{q_n - p_n} \int_0^{\pi/2(q_n - p_n)} \frac{\omega_p(\tilde{s};t)}{t^2} (q_n - p_n) t \, dt$$

= $O(1) \int_0^{\pi/2(q_n - p_n)} \frac{\omega_p(\tilde{s};t)}{t} \, dt$
= $O\{(\pi/2(q_n - p_n)) H(\pi/2(q_n - p_n))\}.$ (5.3)

Again using Lemma 3,

$$\|I_2\|_p = O(1) \frac{1}{(q_n - p_n)} \int_{\pi/2(q_n - p_n)}^{\pi} \frac{\omega_p(\tilde{s}; t)}{t^2} dt$$

= $O\{(\pi/2(q_n - p_n))H(\pi/2(q_n - p_n))\}.$ (5.4)

Combining (5.3) and (5.4), we get (3.2). This completes the proof of Theorem 1.

Proof of theorem 2. Since $\tilde{s} \in Lip(\alpha, p), 0 < \alpha \le 1, p > 1$, therefore $\omega_p(\tilde{s}; t) = O(t^{\alpha})$, and

$$H(u) = \begin{cases} u^{\alpha - 1} , & 0 < \alpha < 1 \\ \log \frac{1}{u} , & \alpha = 1 , \end{cases}$$
(5.5)

set

then by Theorem 1, we get (3.3).

This completes the proof of Theorem 1.

Proof of theorem 3. We have from the proof of Theorem 1 and Lemma 2

$$|I_1| = O(1) \frac{1}{q_n - p_n} \int_0^{\pi/2(q_n - p_n)} t^{\alpha - \frac{1}{p} - 1} (q_n - p_n) dt$$
$$= O((q_n - p_n)^{-\alpha + (1/p)}).$$
(5.6)

Again from Lemma 2,

$$\left| I_{2} \right| = O(1) \frac{1}{q_{n} - p_{n}} \int_{\pi/2(q_{n} - p_{n})}^{\pi} t^{\alpha - (1/p) - 2} dt$$
$$= O\left(\left(q_{n} - p_{n} \right)^{-\alpha + (1/p)} \right) .$$
(5.7)
we get (3.4)

Combining (5.6) and (5.7), we get, (3.4) This completes the proof of Theorem 3.

6. Corollaries: If we put $q_n = n$ and $p_n = n - \lambda_n$, then deferred Cesàro - transform reduces to n^{th} generalized de la Vallée Poussin means $V_n(\lambda)$ then from Theorem 1,2 and 3, we get following respectively:

Corollary1. Let $\tilde{s} \in L_p(p > 1)$ be a periodic signal and let $\omega_p(s; t)$ satisfies (3.1), then

Approximation of signal in the L_p ...

$$\begin{split} \left\| V_n(\widetilde{s}_n) - \widetilde{s}_{2t}(t_1) \right\|_p &= O\{ (\pi/2\lambda_n) H(\pi/2\lambda_n) \}. \\ \text{Corollary 2 .Let } \widetilde{s} &\in Lip(\alpha, p), 0 < \alpha \leq 1, \ p > 1, \text{ then we have} \\ \left\| V_n(\widetilde{s}_n) - \widetilde{s}_{2t}(t_1) \right\|_p &= \begin{cases} O\{ (\lambda_n)^{-\alpha} \}, & 0 < \alpha < 1 \\ O\{ \log(\lambda_n)/\lambda_n \}, & \alpha = 1. \end{cases}. \\ \text{Corollary3. Let } \widetilde{s} &\in Lip(\alpha, p), 0 < \alpha \leq 1, \ p > 1, \ \alpha p > 1, \\ \left| V_n(\widetilde{s}_n) - \widetilde{s}_{2t}(t_1) \right| &= O\{ (\lambda_n)^{-\alpha + (1/p)} \}. \end{split}$$

Competing Interests

The authors declare that they have no competing interests.

Author's contribution

All authors contributed equally and significantly in writing this article. All authors read and approved final manuscript.

References

- 1. Agnew, R. P., On deferred Cesàro means, Ann. Math., 33 (1932), 413-421.
- 2. Chandra, P., Functions of classes L_p and $Lip(\alpha, p)$ and generalized De La Vallee Poussin means. The Mathematics Student Vol. 52, 1 4, (1984) 121 125.
- Das, G., Ghose, T. and Ray ,B.K., Degree of approximation of functions by their Fourier series in the generalized Hölder metric, Proc. Indian Acad. Sci. (Math. Sci), 106 no 2 (1996),139-153.
- 4. Hardy,G.H., Littlewood, J.E. and Polya.G., Inequalities, Cambridge University Press, London, 1967.
- Hardy, G.H., Littlewood, J.E., A convergence criterion for Fourier series, Math. Z. 28 (1928), 612-634.
- 6. Singh,T. and Soni ,B., Approximation by generalized De-La Vallee Poussin processor, The Mathematics Student 74,1-4 (2005) ,199-206.
- 7. Singh, T. and Mahajan, P., Error bound of conjugate periodic signal belonging to L_p and $Lip(\alpha, p)$ classes by (C,1)(E,1) processor.V.J.M.S. 7(1) (2007),63-70.
- 8. Zygmund, A., Trigonomatric series, Vol.1, Cambridge University Press, 1959.