Approximation of signal in the L_{p} and $L i p(\alpha, p)$-classes by Deferred Cesàro transform

Om Prakash Chauhan ${ }^{1, *}$, Pravin Mahajan ${ }^{2}$, Gopal Meena ${ }^{1}$, Vishal Joshi ${ }^{1}$, Ashit Shukla ${ }^{1}$

${ }^{1}$ Department of Applied Mathematics, Jabalpur Engineering College, Jabalpur-482011, India.
${ }^{2}$ Department of Mathematics, Shreejee Institute of Technology and Management, Khargone, India.
Abstract: In this article, we determine the degree of approximation of 2π-conjugate periodic signal in
the L_{p} and $\operatorname{Lip}(\alpha, p)$-classes by deferred Cesàro transform.

1. Definitions and Notations: Let $\mathrm{s}(\mathrm{t}) \in L_{p}[0,2 \pi]$ be a 2π - periodic signal and let its Fourier trigonometric series be given by

$$
\begin{equation*}
s(t) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{n=0}^{\infty} A_{n}(t) \tag{1.1}
\end{equation*}
$$

and let the conjugate Fourier trigonometric series corresponding to (1.1) is given by

$$
\begin{equation*}
\tilde{s} \sim \sum_{n=1}^{\infty}\left(a_{n} \sin n t-b_{n} \cos n t\right) \equiv \sum_{n=0}^{\infty} B_{n}(t) \tag{1.2}
\end{equation*}
$$

Let $n^{t h}$ partial sums of (1.1) and (1.2) be given by $s_{n}(t)$ and $\widetilde{s}_{n}(t)$, respectively.
Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be sequences of non-negative integers satisfying the followings

$$
\begin{equation*}
p_{n}<q_{n}, \text { and } \lim _{n \rightarrow \infty} q_{n}=\infty \tag{1.3}
\end{equation*}
$$

The processor

$$
\begin{equation*}
D_{n}\left(s_{n}\right)=\frac{1}{q_{n}-p_{n}} \sum_{k=p_{n}}^{q_{n}} s_{k}(t) \tag{1.4}
\end{equation*}
$$

defines the deferred Cesàro - transform $D\left(p_{n}, q_{n}\right)$ ([1], also see [3]). It is known [1] that $D\left(p_{n}, q_{n}\right)$ is regular under conditions (1.3). Note that $D(0, n)$ is the (C, 1$)$ transform with the assumption that $\left\{\lambda_{n}\right\}$ be a monotone non -decreasing sequence of positive integers such that $\lambda_{1}=1$ and $\lambda_{n+1}-\lambda_{n} \leq 1$, then $D\left(n-\lambda_{n}, n\right)$ is same as the $n^{\text {th }}$ generalized de la Vallée Poussin processor, generated by the sequence $\left\{\lambda_{n}\right\}[6]$.
The space $L_{p}[0,2 \pi]$, for $\mathrm{p}=\infty$ includes the spaces of $C_{2 \pi}$ of all continuous signals defined over $[0,2 \pi]$ (p. 45, [8]).
We write

$$
\begin{equation*}
\omega(\delta, s)=\underset{0 \leq h \leq \delta}{\operatorname{Sup}}|s(t+h)-s(t)|, \tag{1.5}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\omega_{p}(\delta, s)=\operatorname{Sup}_{0 \leq h \leq \delta}\|s(t+h)-s(t)\|_{p} \tag{1.6}
\end{equation*}
$$

\]

which are respectively, called the modulus of continuity and the integral modulus of continuity. In particular when $\omega_{p}(\delta ; s)=O\left(\delta^{\alpha}\right),(0<\alpha \leq 1)$, then $\omega_{p}(\delta ; s)$ reduces to $\operatorname{Lip}(\alpha, p)$. We shall use following notations.

$$
\begin{align*}
\tilde{s}_{t}\left(t_{1}\right) & =\frac{1}{2 \pi} \int_{0}^{\pi} \psi_{t_{1}}(t) \cot \frac{t}{2} d t \tag{1.7}\\
\psi_{t_{1}}(t) & =\widetilde{s}\left(t_{1}+t\right)-\tilde{s}\left(t_{1}-t\right) \tag{1.8}
\end{align*}
$$

2. Known results: Singh and Mahajan [7] established following theorems in L_{p} and $\operatorname{Lip}(\alpha, p)$-norms by (C,1)(E,1)-transform.

Theorem A. Let $\tilde{s} \in L_{P}(p>1)$ be a periodic signal and let $\omega_{p}(s ; t)$ satisfies the following condition

$$
\begin{equation*}
\int_{t}^{\pi} \frac{\omega_{p}(\tilde{s} ; u)}{u^{2}} d u=O(H(t)) \tag{2.1}
\end{equation*}
$$

where $\mathrm{H}(\mathrm{t}) \uparrow$ and $\mathrm{H}(\mathrm{t}) \geq 0$, then we have

$$
\begin{equation*}
\left\|\tilde{t}_{n}(\widetilde{s} ; t)-\tilde{s}\right\|_{p}=O\left(\frac{1}{n} H\left(\frac{\pi}{n}\right)\right) \tag{2.2}
\end{equation*}
$$

Theorem B. Let $\tilde{s} \in \operatorname{Lip}(\alpha, p), 0<\alpha \leq 1, p>1$, then we have

$$
\left\|\tilde{t}_{n}(\tilde{s} ; t)-\tilde{s}\right\|_{p}= \begin{cases}O\left(n^{-\alpha}\right), & 0<\alpha<1 \tag{2.3}\\ O\left(\frac{\log n}{n}\right), & \alpha=1\end{cases}
$$

Theorem C. Let $\tilde{s} \in \operatorname{Lip}(\alpha, p), 0<\alpha \leq 1, p>1, \alpha p>1$,

$$
\begin{equation*}
\left|\tilde{t}_{n}(\tilde{s} ; t)-\tilde{s}\right|=O\left(n^{-\alpha+\frac{1}{p}}\right) \tag{2.4}
\end{equation*}
$$

3. Main results: The object of this paper is to extend the above results for deferred Cesàro - transform. We shall prove following:

Theorem 1. Let $\tilde{s} \in L_{P}(p>1)$ be a periodic signal and let $\omega_{p}(s ; t)$ satisfies the follow ing condition

$$
\begin{equation*}
\int_{t}^{\pi / 2} \frac{\omega_{p}(\tilde{s} ; u)}{u^{2}} d u=O(H(t)) \tag{3.1}
\end{equation*}
$$

where $\mathrm{H}(\mathrm{t}) \uparrow$ and $\mathrm{H}(\mathrm{t}) \geq 0$, then we have

$$
\begin{equation*}
\left.\left\|\tilde{D}_{n}\left(\tilde{n}_{n}\right)-\widetilde{s}_{2 t}\left(t_{1}\right)\right\|_{p}=O\left\{\left(\pi / 2\left(q_{n}-p_{n}\right)\right) H\left(\pi / 2\left(q_{n}-p_{n}\right)\right)\right)\right\} \tag{3.2}
\end{equation*}
$$

Theorem 2. Let $\tilde{s} \in \operatorname{Lip}(\alpha, p), 0<\alpha \leq 1, p>1$, then we have

$$
\left\|\widetilde{D}_{n}\left(\widetilde{s}_{n}\right)-\tilde{s}_{2 t}\left(t_{1}\right)\right\|_{p}=\left\{\begin{array}{cl}
O\left\{\left(q_{n}-p_{n}\right)^{-\alpha}\right\}, & 0<\alpha<1 \tag{3.3}\\
O\left\{\log \left(q_{n}-p_{n}\right) /\left(q_{n}-p_{n}\right)\right\}, & \alpha=1 .
\end{array}\right.
$$

Theorem 3. Let $\tilde{s} \in \operatorname{Lip}(\alpha, p), 0<\alpha \leq 1, p>1, \alpha p>1$,

$$
\begin{equation*}
\left|\tilde{D}_{n}\left(\tilde{s}_{n}\right)-\tilde{s}_{2 t}\left(t_{1}\right)\right|=O\left\{\left(q_{n}-p_{n}\right)^{-\alpha+(1 / p)}\right\} . \tag{3.4}
\end{equation*}
$$

4. Lemmas. We shall use the following lemmas.

Lemma1.([4],p.148). If $\mathrm{h}(\mathrm{x}, \mathrm{t})$ is a function of two variables defined for $0 \leq t \leq \pi, 0 \leq x \leq 2 \pi$, then

$$
\left\|\int h(x, t) d t\right\|_{p} \leq \int\|h(x, t)\| d t \quad(p>1)
$$

Lemma 2. ([5], Theorem 5(ii)). Let $s(t) \in \operatorname{Lip}(\alpha, p), 0<\alpha \leq 1, p>1, \alpha p>1$, then $\mathrm{s}(\mathrm{t})$ is equivalent to a function $g \in \operatorname{Lip}\left(\alpha-\frac{1}{p}\right)$ and $\phi(t)=O\left(t^{\alpha-\frac{1}{p}}\right)$ almost everywhere.
Lemma 3. [2]. If (3.1) hold, then

$$
\omega_{p}(\tilde{s} ; t)=O(t H(t))
$$

Proof of theorem 1. Following Zygmund [8], we have

$$
\left.\left.\begin{array}{l}
\begin{array}{rl}
\tilde{D}_{n}\left(\tilde{s}_{n}\right)-\tilde{s}_{t}\left(t_{1}\right) & =-\frac{1}{\left(q_{n}-p_{n}\right) \pi} \int_{0}^{\pi} \frac{\psi_{t_{1}}(t)}{2 \sin (t / 2)} \sum_{k=p_{n}}^{q_{n}} \cos (k+(1 / 2)) t d t \\
& =-\frac{1}{\left(q_{n}-p_{n}\right) \pi} \int_{0}^{\pi} \frac{\psi_{t_{1}}(t)}{(2 \sin (t / 2))^{2}} \sum_{k=p_{n}}^{q_{n}} 2 \sin (t / 2) \cos (k+(1 / 2)) t d t
\end{array} \\
=-\frac{1}{\left(q_{n}-p_{n}\right) \pi} \int_{0}^{\pi} \frac{\psi_{t_{1}}(t)}{(2 \sin (t / 2))^{2}} \cos \left(q_{n}+p_{n}+1\right)(t / 2) \sin \left(q_{n}-p_{n}+1\right)(t / 2) d t \\
\tilde{D}_{n}\left(\tilde{s}_{n}\right)-\tilde{s}_{2 t}\left(t_{1}\right)
\end{array}\right)-\frac{1}{\left(q_{n}-p_{n}\right) \pi} \int_{0}^{\pi / 2} \frac{\psi_{t_{1}}(t)}{(2 \sin (t / 2))^{2}} \cos \left(q_{n}+p_{n}+1\right)(t / 2) \sin \left(q_{n}-p_{n}+1\right)(t / 2) d t\right) \text { (5.1) }
$$

Now, writing,

$$
\int_{0}^{\pi / 2}=\int_{0}^{\pi / 2\left(q_{n}-p_{n}\right)}+\int_{\pi / 2\left(q_{n}-p_{n}\right)}^{\pi / 2}=I_{1}+I_{2}, \text { say }
$$

Applying the Minkowski inequality to the right side of (5.1), we get

$$
\begin{gathered}
\left\|\tilde{D}_{n}\left(\tilde{s}_{n}\right)-\tilde{s}_{2 t}\left(t_{1}\right)\right\|_{p} \leq\left\|I_{1}\right\|_{p}+\left\|I_{2}\right\|_{p}, \\
\left\|I_{1}\right\| \leq \frac{1}{\left(q_{n}-p_{n}\right)}\left\|\int_{0}^{\pi / 2\left(q_{n}-p_{n}\right)} \frac{\left|\psi_{t_{1}}(2 t)\right|}{(t)^{2}} \cos \left(q_{n}+p_{n}+1\right) t \sin \left(q_{n}-p_{n}+1\right) t d t\right\|_{p} \\
= \\
=O(1) \frac{1}{\left(q_{n}-p_{n}\right)} \int_{0}^{\pi / 2\left(q_{n}-p_{n}\right)} \frac{\left\|\psi_{t_{1}}(2 t)\right\|_{p}}{(t)^{2}}\left|\cos \left(q_{n}+p_{n}+1\right) t \sin \left(q_{n}-p_{n}+1\right) t\right| d t
\end{gathered}
$$

We note that

$$
\left\|\psi_{t_{1}}(2 t)\right\|_{p}=O\left\{\omega_{p}(\tilde{s} ; t)\right\},
$$

thus

$$
\begin{align*}
\left\|I_{1}\right\|_{p} & =O(1) \frac{1}{q_{n}-p_{n}} \int_{0}^{\pi / 2\left(q_{n}-p_{n}\right)} \frac{\omega_{p}(\tilde{s} ; t)}{t^{2}}\left(q_{n}-p_{n}\right) t d t \\
& =O(1) \int_{0}^{\pi / 2\left(q_{n}-p_{n}\right)} \frac{\omega_{p}(\tilde{s} ; t)}{t} d t \\
& =O\left\{\left(\pi / 2\left(q_{n}-p_{n}\right)\right) H\left(\pi / 2\left(q_{n}-p_{n}\right)\right)\right\} . \tag{5.3}
\end{align*}
$$

Again using Lemma 3,

$$
\begin{align*}
\left\|I_{2}\right\|_{p} & =O(1) \frac{1}{\left(q_{n}-p_{n}\right)} \int_{\pi / 2}^{\pi} \frac{\omega_{p}(\tilde{s} ; t)}{t^{2}} d t \\
& =O\left\{\left(\pi / 2\left(q_{n}-p_{n}\right)\right) H\left(\pi / 2\left(q_{n}-p_{n}\right)\right)\right\} \tag{5.4}
\end{align*}
$$

Combining (5.3) and (5.4), we get (3.2).
This completes the proof of Theorem 1 .
Proof of theorem 2. Since $\tilde{s} \in \operatorname{Lip}(\alpha, p), 0<\alpha \leq 1, p>1$, therefore

$$
\omega_{p}(\tilde{s} ; t)=O\left(t^{\alpha}\right), \text { and }
$$

set

$$
H(u)=\left\{\begin{array}{cc}
u^{\alpha-1} & 0<\alpha<1 \tag{5.5}\\
\log \frac{1}{u}, & \alpha=1,
\end{array}\right.
$$

then by Theorem 1, we get (3.3).
This completes the proof of Theorem 1.
Proof of theorem 3. We have from the proof of Theorem 1 and Lemma 2

$$
\begin{align*}
\left|I_{1}\right| & =O(1) \frac{1}{q_{n}-p_{n}} \int_{0}^{\pi / 2\left(q_{n}-p_{n}\right)} t^{\alpha-\frac{1}{p}-1}\left(q_{n}-p_{n}\right) d t \\
& =O\left(\left(q_{n}-p_{n}\right)^{-\alpha+(1 / p)}\right) . \tag{5.6}
\end{align*}
$$

Again from Lemma 2,

$$
\begin{align*}
\left|I_{2}\right| & =O(1) \frac{1}{q_{n}-p_{n}} \int_{\pi / 2\left(q_{n}-p_{n}\right)}^{\pi} t^{\alpha-(1 / p)-2} d t \\
& =O\left(\left(q_{n}-p_{n}\right)^{-\alpha+(1 / p)}\right) . \tag{5.7}
\end{align*}
$$

Combining (5.6) and (5.7), we get, (3.4)
This completes the proof of Theorem 3.
6. Corollaries: If we put $q_{n}=n$ and $p_{n}=n-\lambda_{n}$, then deferred Cesàro - transform reduces to $n^{\text {th }}$ generalized de la Vallée Poussin means $V_{n}(\lambda)$ then from Theorem 1,2 and 3 , we get following respectively:
Corollary1. Let $\tilde{s} \in L_{P}(p>1)$ be a periodic signal and let $\omega_{p}(s ; t)$ satisfies (3.1), then

$$
\left\|V_{n}\left(\tilde{s}_{n}\right)-\tilde{s}_{2 t}\left(t_{1}\right)\right\|_{p}=O\left\{\left(\pi / 2 \lambda_{n}\right) H\left(\pi / 2 \lambda_{n}\right)\right\} .
$$

Corollary 2 Let $\tilde{s} \in \operatorname{Lip}(\alpha, p), 0<\alpha \leq 1, p>1$, then we have

$$
\left\|V_{n}\left(\tilde{s}_{n}\right)-\tilde{s}_{2 t}\left(t_{1}\right)\right\|_{p}=\left\{\begin{array}{cl}
O\left\{\left(\lambda_{n}\right)^{-\alpha}\right\}, & 0<\alpha<1 . \\
O\left\{\log \left(\lambda_{n}\right) / \lambda_{n}\right\}, & \alpha=1 .
\end{array} .\right.
$$

Corollary3. Let $\tilde{s} \in \operatorname{Lip}(\alpha, p), 0<\alpha \leq 1, p>1, \alpha p>1$,

$$
\left|V_{n}\left(\widetilde{s}_{n}\right)-\tilde{s}_{2 t}\left(t_{1}\right)\right|=O\left\{\left(\lambda_{n}\right)^{-\alpha+(1 / p)}\right\} .
$$

Competing Interests

The authors declare that they have no competing interests.

Author's contribution

All authors contributed equally and significantly in writing this article. All authors read and approved final manuscript.

References

1. Agnew, R. P., On deferred Cesàro means, Ann. Math., 33 (1932), 413-421.
2. Chandra,P., Functions of classes L_{P} and $\operatorname{Lip}(\alpha, p)$ and generalized De La Vallee - Poussin means. The Mathematics Student Vol. 52, 1 - 4, (1984) 121-125.
3. Das , G., Ghose, T. and Ray ,B.K., Degree of approximation of functions by their Fourier series in the generalized Hölder metric, Proc. Indian Acad. Sci. (Math. Sci), 106 no 2 (1996),139-153.
4. Hardy,G.H., Littlewood, J.E. and Polya.G., Inequalities, Cambridge University Press, London, 1967.
5. Hardy, G.H., Littlewood, J.E., A convergence criterion for Fourier series, Math. Z. 28 (1928), 612-634.
6. Singh,T. and Soni ,B., Approximation by generalized De-La Vallee Poussin processor, The Mathematics Student 74,1-4 (2005) ,199-206.
7. Singh, T. and Mahajan, P., Error bound of conjugate periodic signal belonging to L_{P} and $\operatorname{Lip}(\alpha, p)$ - classes by (C,1)(E,1) processor.V.J.M.S. 7(1) (2007),63-70.
8. Zygmund, A.,Trigonomatric series, Vol.1, Cambridge University Press,1959.

[^0]: author

