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Abstract: In this article, we determine the degree of approximation of 2 -conjugate periodic signal in 

the  pL  and  pLip ,  -classes by deferred Cesàro transform. 

 

1. Definitions and Notations: Let s (t)  2,0pL  be a 2 - periodic signal and let its Fourier 

trigonometric series be given by  
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and let the conjugate Fourier trigonometric  series corresponding to (1.1) is given by 
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Let 
thn partial sums of (1.1) and (1.2) be given by  tsn and )(~ tsn , respectively.  

Let  np  and { nq } be sequences of non-negative integers satisfying the followings 
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defines the deferred Cesàro - transform  nn qpD ,  ( [1], also see [3] ). It is known [1] that  

 nn qpD , is regular under conditions (1.3). Note that   nD ,0  is the (C, 1) transform  with the 

assumption that  n  be a monotone non –decreasing sequence of positive integers such that 

11  and ,11  nn  then   nnD n ,  is same as the 
thn  generalized de la Vallée Poussin  

processor, generated by the sequence   n [6]. 

The space  2,0pL , for p =  includes the spaces of 2C of all continuous signals defined over 

 2,0  (p. 45, [8]). 

We write  
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which are respectively, called the modulus of continuity and the integral modulus of 

 continuity. In particular when      ,10,;   Osp
then  sp ;  reduces to 

 pLip , . We shall use following notations. 
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2. Known results: Singh and Mahajan [7] established following theorems in  pL  and 

 pLip , -norms by (C,1)(E,1)-transform. 

 

Theorem A. Let  1~  pLs P be a periodic signal and let  tsp ; satisfies the following   condition  
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where H(t)   and H(t) 0 , then we have  
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Theorem  B. Let    ,1,10,,~  ppLips  then we have  
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 Theorem C.  Let   ,1,1,10,,~  pppLips   
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3. Main results: The object of this paper is to extend the above results for deferred Cesàro – transform. 

We shall prove following:  

 

   Theorem 1. Let  1~  pLs P be a periodic signal and let  tsp ; satisfies the follow -   

    ing   condition  

                                              
 

  ,
;~2

2
tHOdu

u

us

t

p


 
             (3.1) 

where H(t)   and H(t) 0 , then we have  
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Theorem 2. Let   ,1,10,,~  ppLips  then we have 
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 Theorem 3.  Let   ,1,1,10,,~  pppLips   
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4. Lemmas. We shall use the following lemmas.  

Lemma1.([4],p.148). If h(x,t) is a function of two variables defined for  20,0  xt , then  
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Lemma 2. ([5], Theorem 5(ii)).  Let      ,1,1,10,,  pppLipts  then s(t) is 

equivalent to a function 
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  almost everywhere.  

Lemma  3. [2]. If (3.1) hold, then  
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Proof of theorem 1. Following Zygmund [8], we have  
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Now, writing,  
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Applying the Minkowski  inequality to the right side of (5.1), we get  
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We note that  
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Again using Lemma 3, 
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Combining (5.3) and (5.4), we get (3.2). 

This completes the proof of Theorem 1.  

 

Proof of theorem 2. Since    ,1,10,,~  ppLips   therefore  
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then by Theorem 1, we get  (3.3). 

This completes the proof of Theorem 1.  

 

Proof of theorem 3. We have from the proof of Theorem 1 and Lemma 2 
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Again from Lemma 2,  
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Combining (5.6) and (5.7), we get, (3.4) 

This completes the proof of Theorem 3. 

 

6. Corollaries: If we put nnn npandnq  , then deferred Cesàro - transform reduces to 

thn generalized de la Vallée Poussin means   nV then from Theorem 1 ,2 and 3 , we get following 

respectively: 

Corollary1. Let  1~  pLs P be a periodic signal and let  tsp ; satisfies (3.1), then  
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Corollary3. Let   ,1,1,10,,~  pppLips   
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