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ABSTRACT 

In this paper we establish two theorems where in we have obtained the image of generalized k-Wright 

hypergeometric function under the fractional integral operators involving Fox’s H-function. Four special cases 

of these theorems have also been derived. On account of the general nature of our result a large number of new 

and known results follow as special cases of our main findings.  

1.  INTRODUCTION: 

Generalized k-Gamma function )(xk defined as (Diaz and Pariguan [1])
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where knx ,)( is the k-Pochhammer symbol and is given by 
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For )(,)Re( xx k 0 is defined as the integral  
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From equation (3) it follows that 
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The generalized Wright hypergeometric function [8] for Cbaz ji ,, and Rji  ,  

),.....,:,..........,;,( qjpiji 21210  will be represented in the following manner: 
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The generalized k- Wright hypergeometric function )(z
k

qp is defined by Gehlot and Prajapati [3] for  

RRkCbaz jiji    ,,,,, ),.....,:,..........,;,( qjpiji 21210   

and 
 kZCnbna jjii /)(,)( 
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For convergence, we use the following notations 
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1. If 1 , then the series (6) is absolutely convergent for all Cz and the generalized        

   k- Wright hypergeometric function )(z
k

qp  is an entire function of z. 

2. If 1 , then the series (6) is absolutely convergent for all
1Dz . 
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3. If 1 , then the series (6) is absolutely convergent for all 
2

11   )Re(, Dz
 

 

 Special case of equation (6) becomes in the form by taking                                                                                   

  2211 ,1,1,0,1,0,1 bbqpk
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with complex Cz , , known as Wright generalized Bessel function [7, p.19, eq (2.6.10)]  

The Fox’s H-function or simply H-function was introduced by Charle’s Fox [2].This function is defined and 

represented by means of the following Mellin-Barnes type of contour integral: 

                                                                                                                    

                                                                                 (8)      
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where 1i , z ≠ 0 and  
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The nature of the contour L in (9), the conditions for convergence of the integral (9), the asymptotic expansion of 

the H-function and some of its special cases can be referred to in the works of Srivastava,Gupta and Goyal [7] and 

Mathai and Saxena [5]. 

The fractional integral operators involving Fox’s H-function were defined and studied by Kantesh Gupta[4] and 

Saxena and Kumbhat [6] in the following form: 
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where M, N, P, Q are positive integers such that 1 ≤ M ≤ Q , 0 ≤ N ≤ P. m, n and r are also positive integers. The 

(sufficient) conditions of existence of operators (11) and (12) are given below:       
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 2.  MAIN THEOREMS 

THEOREM 1 
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then for 1 , fractional integral operator 
 ,

, rxR  of generalized k-Wright hypergeometric function )(z
k

qp

is given by 
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PROOF: 

Using equation (11), the left hand side of theorem can be written as
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Now expressing )(z
k

qp  in summation form and H-Function in contour integral with the help of equations (6) 

and (9) respectively and then changing the order of integration and summation which is justified under the 

conditions stated with theorem, we get  
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To evaluate the t-integral substituting dzz
r

x
dtxztz
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Finally, on evaluating the z integral with the help of Beta function and re-interpreting the result thus obtained in 

terms of H-function and )(z
k

qp we get the required result.  
 

THEOREM 2 
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PROOF: 

The proof of Theorem 2 can be developed on the lines similar to those given with proof of Theorem1.

                                                                   

3.  SPECIAL CASES 

1. If in Theorem 1 we reduce H-function involved in 
 ,

,rxR to 01 F [7, p.18, eq (2.6.4)], by taking 

1,0,1,1,0,1,1,1,1,1,1 1111   dclmrQPNM we get the 

following interesting result after a little simplification. 
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The conditions of validity of (18) can be easily derived from the conditions of existence mentioned with the 

Theorem1 

2. Further on taking k=1 in above result the following interesting result is obtained after a little simplification 
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The conditions of validity of (19) can be easily follows from conditions mentioned with the Theorem1. 



VANDANA AGARWAL, MONIKA MALHOTRA AND MEENA KUMARI GURJAR 

 

12 
 

3. In Theorem1 on reducing H-function involved in 
 ,

,rxR to Whittaker function [7, p.18, eq(2.6.7)], we get the 

following interesting result: 
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The conditions of validity of above corollary can be easily obtained from the existence conditions of Theorem1 

4. On reducing )(z
k

qp involved in the Theorem 2 to Wright Generalized Bessel function of first kind  (7), we 

get the following result  
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provided that the conditions of existence of the above result follows easily with the help of Theorem 2. 
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