LABELING OF SUBDIVIDED GRAPHS

*K.Murugan and A.Subramanian

Abstract

In this paper we prove that the graph obtained by the subdivision of the edges of the star $S_{1, n}$, the graph obtained by the subdivision of the central edge of the Bistar $B_{m, n}$, the graph obtained by subdividing the edges of the path P_{n} in $P_{n} \square K_{1}$ and $P_{n} \square K_{2}$, the graph obtained by subdividing the parallel edges of a H-graph in $H \square K_{1}$ and in $H \square K_{2}$ are Skolem difference mean.

Keywords: Star, Bistar, Path, Subdivision, Labeling, Skolem Difference Mean labeling, Skolem Difference Mean graphs.

AMS Subject classification (2010): 05C78

1 Introduction

Throughout this paper, by a graph, we mean a finite, undirected, simple graph. Let $G(V, E)$ be a graph with p vertices and q edges. The Star $S_{1, n}$ is obtained from K_{1} by joining n pendant edges with K_{1}. The Bistar $B_{m, n}$ is the graph obtained from K_{2} by joining m pendant edges to one end of K_{2} and n pendant edges to the other end of K_{2}. The edge of K_{2} is called the central edge of $B_{m, n}$ and the vertices of K_{2} are called the central vertices of $B_{m, n}$. A path is a simple graph obtained from a walk $\mathrm{v}_{0} \mathrm{e}_{1} \mathrm{v}_{1} \mathrm{e}_{2} \mathrm{v}_{2} \ldots \mathrm{e}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}$ in which the vertices and edges are distinct. A path on n vertices is denoted by P_{n}. The H-graph of a path P_{n} is the graph obtained from two copies of P_{n} with vertices $v_{1}, v_{2}, \ldots v_{n}$ and $u_{1}, u_{2}, \ldots u_{n}$
by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd and the vertices $v_{\frac{n}{2}+1}$ and $u_{\frac{n}{2}}$ if n is even [3].

[^0]
2 Main Results

Definition 2.1 A graph $G(V, E)$ with p vertices and q edges is said to have Skolem Difference Mean labeling if it is possible to label the vertices $\mathrm{x} \varepsilon \mathrm{V}$ with distinct elements $\mathrm{f}(\mathrm{x})$ from $1,2,3 \ldots \mathrm{p}+\mathrm{q}$ in such a way that the edge $\mathrm{e}=\mathrm{uv}$ is labeled with $\frac{|f(u)-f(v)|}{2}$ if $|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})|$ is even and $\frac{|f(u)-f(v)|+1}{2}$ if $|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})|$ is odd and the resulting edges get distinct labels from 1,2,3...q. A graph that admits Skolem difference mean labeling is called Skolem difference mean graph.
The Skolem difference mean labeling of the path P_{6} is given in figure 1.

Fig 1
Theorem 2.2 The graph obtained by the subdivision of the edges of the star $S_{1, n}$ is Skolem difference mean for all values of n.
Proof. Let G be the graph obtained by the subdivision of the edges of the star $S_{1, n}$.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}, \mathrm{u}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{uw}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
Define the function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2 \ldots 4 \mathrm{n}+1\}$ by
$\mathrm{f}(\mathrm{u})=4 \mathrm{n}+1$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=2 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{n}+2-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
Let f^{*} be the induced edge labeling of f . Then
$\mathrm{f}^{*}\left(\mathrm{uw}_{\mathrm{i}}\right)=2 \mathrm{n}+1-\mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)=\mathrm{n}+2-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \frac{n+1}{2}$ and
$=2\left[\mathrm{i}-\frac{n+1}{2}\right] ; \frac{n+3}{2} \leq \mathrm{i} \leq \mathrm{n}$ if n is odd
$=\mathrm{n}+2-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \frac{n}{2}$ and
$=2\left[\mathrm{i}-\frac{n}{2}\right]-1 ; \frac{n}{2}+1 \leq \mathrm{i} \leq \mathrm{n}$ if n is even
Then the induced edge labels are $1,2 \ldots 2 \mathrm{n}$. Hence the theorem.
The Skolem difference mean labeling of the graph obtained by the subdivision of the edges of the star $\mathrm{S}_{1,4}$ is given in fig 2.

Fig 2
Theorem 2.3 The graph obtained by the subdivision of the central edge of the Bistar $B_{m, n}$ is a Skolem difference mean graph for all values of m and n.
Proof. Let $V\left(B_{m, n}\right)=\left\{u, v, w, u_{i}, v_{j} ; 1 \leq i \leq m, 1 \leq j \leq n\right\} a n d E\left(B_{m, n}\right)=\left\{u w, v w, u_{i}, v_{j} ; 1 \leq i \leq m, 1 \leq j \leq n\right\}$
where u and v are the central vertices and let w be the vertex which subdivides the edge $u v$.
Define the function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3 \ldots 2 \mathrm{~m}+2 \mathrm{n}+5\}$ by
$\mathrm{f}(\mathrm{u})=1$,
$f(w)=2 m+2 n+5$,
$f(v)=3$,
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{m}$ and
$f\left(v_{j}\right)=2 m+2 n+5-2 j, 1 \leq j \leq n$

LABELING OF SUBDIVIDED GRAPHS

Let f^{*} be the induced edge labeling of f . Then
$\mathrm{f}^{*}\left(\mathrm{uu}_{\mathrm{i}}\right)=\mathrm{i} ; 1 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}^{*}(\mathrm{uw})=\mathrm{m}+\mathrm{n}+2$
$\mathrm{f}^{*}(\mathrm{wv})=\mathrm{m}+\mathrm{n}+1$
$\mathrm{f}^{*}\left(\mathrm{Vv}_{\mathrm{j}}\right)=\mathrm{m}+\mathrm{n}+1-\mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{n}$
The induced edge labels are $1,2,3 \ldots \mathrm{~m}+\mathrm{n}+2$. Hence the theorem.

The Skolem difference mean Labeling of the graph obtained by the subdivision of the central edge of the Bistar $\mathrm{B}_{6,4}$ is given in fig 3 .

Fig 3
Theorem 2.4 Let G be a graph obtained from the graph $P_{n} \square K_{1}$ by subdividing the edges of the path P_{n}. Then G is Skolem difference mean for all values of n.
Proof. Let $V(G)=\left\{u_{i}, v_{i}, w_{j} ; 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$ and $E(G)=\left\{u_{i} v_{i}, u_{j} W_{j}, w_{j} u_{j+1} ; 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$
Define f: $V(G) \rightarrow\{1,2 \ldots 6 n-3\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(v_{i}\right)=2 n+2-2 i, 1 \leq i \leq n$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=6 \mathrm{n}-1-2 \mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{n}-1$
Let f^{*} be the induced edge labeling of f . Then
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+2-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \frac{n+1}{2}$ and
$=2\left[\mathrm{i}-\frac{n+1}{2}\right] ; \frac{n+3}{2} \leq \mathrm{i} \leq \mathrm{n}$ if n is odd
$=\mathrm{n}+2-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \frac{n}{2}$ and
$=2\left[\mathrm{i}-\frac{n}{2}\right]-1 ; \frac{n}{2}+1 \leq \mathrm{i} \leq \mathrm{n}$ if n is even.
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}} \mathrm{w}_{\mathrm{j}}\right)=3 \mathrm{n}-2 \mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{n}-1$
$f^{*}\left(w_{j} u_{j+1}\right)=3 n-1-2 j ; 1 \leq j \leq n-1$
Then the induced edge labels are $1,2 \ldots 3 n-2$.Hence the graph G is Skolem difference mean for all n.

The Skolem difference mean Labeling of the graph obtained by subdividing the edges of the path P_{5} of the graph $\mathrm{P}_{5} \square \mathrm{~K}_{1}$ is given in fig 4.

Fig 4
Theorem 2.5 Let G be a graph obtained from the graph $\mathrm{P}_{\mathrm{n}} \square \mathrm{K}_{2}$ by subdividing the edges of the path P_{n}. Then G is Skolem difference mean for all values of n.
Proof. Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i} 2}, \mathrm{w}_{\mathrm{j}}, 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{n}-1\right\}$ and

$$
\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i} 1}, \mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i} 2}, \mathrm{u}_{\mathrm{j}} \mathrm{w}_{\mathrm{j},}, \mathrm{w}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1} ; 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{n}-1\right\}
$$

Define f: $V(G) \rightarrow\{1,2 \ldots 8 n-3\}$ by
$f\left(u_{i}\right)=2 i-1,1 \leq i \leq n$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i} 1}\right)=6 \mathrm{i}-4,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i} 2}\right)=6 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(w_{j}\right)=8 n-1-2 j, 1 \leq j \leq n-1$
Let f^{*} be the induced edge labeling of f . Then
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{V}_{\mathrm{i} 1}\right)=2 \mathrm{i}-1 ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i} 2}\right)=2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}} \mathrm{w}_{\mathrm{j}}\right)=4 \mathrm{n}-2 \mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{w}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}\right)=4 \mathrm{n}-1-2 \mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{n}-1$
Then the induced edge labels are $1,2 \ldots 4 \mathrm{n}-2$. Hence the graph G is Skolem difference mean for all n .

The Skolem difference mean Labeling of the graph obtained by subdividing the edges of the path P_{5} of the graph $\mathrm{P}_{5} \square \mathrm{~K}_{2}$ is given in fig 5 .

Fig 5
Theorem 2.6 The graph G obtained by the subdivision of the parallel edges of a H -graph in $\mathrm{H} \square \mathrm{K}_{1}$ is Skolem difference mean.
Proof. Let $V(G)=\left\{u_{i}, u_{i}^{\prime}, v_{i}, v_{i}^{\prime}, w_{j}, \mathrm{t}_{\mathrm{j}}, 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{n}-1\right\}$ and
$1 \leq i \leq n, 1 \leq j \leq n-1\}$
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2 \ldots 12 \mathrm{n}-5\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1 ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=10 \mathrm{n}-1-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=4 \mathrm{n}+2-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{\prime}\right)=6 \mathrm{n}-2+2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=12 \mathrm{n}-3-2 \mathrm{j} ; 1 \leq \mathrm{i} \leq \mathrm{n}-1$

LABELING OF SUBDIVIDED GRAPHS

$\mathrm{f}\left(\mathrm{t}_{\mathrm{j}}\right)=2 \mathrm{n}-1+2 \mathrm{i} ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1$
Let f^{*} be the induced edge labeling of f. Then
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=2 \mathrm{n}+2-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}{ }^{\prime}\right)=2 \mathrm{n}+1-2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$f^{*}\left(u_{j} w_{j}\right)=6 n-1-2 j ; 1 \leq j \leq n-1$
$\mathrm{f}^{*}\left(\mathrm{w}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}\right)=6 \mathrm{n}-2-2 \mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{j}} \mathrm{t}_{\mathrm{j}}\right)=4 \mathrm{n}-2 \mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{n}-1$
$f^{*}\left(\mathrm{t}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}+1}\right)=4 \mathrm{n}-1-2 \mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}\right)=\mathrm{ff}^{*}\left(v_{\frac{n}{2}} u_{\frac{n}{2}}\right)=4 \mathrm{n}-1$
Then the induced edge labels are $1,2 \ldots 6 n-3$.Hence the theorem.

The Skolem difference mean labeling of a graph G obtained by the subdivision of the parallel edges of a H -graph in $\mathrm{H} \square \mathrm{K}_{1}$ is given in figures 6 and 7.

Fig 6

Fig 7
Theorem 2.7 The graph G obtained by the subdivision of the parallel edges of a H -graph in $\mathrm{H} \square \mathrm{K}_{2}$ is Skolem difference mean.
Proof. Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}{ }^{\prime}, \mathrm{u}_{\mathrm{i}}{ }^{\prime}{ }^{\prime}, \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}{ }^{\prime}, \mathrm{v}_{\mathrm{i}}{ }^{\prime}{ }^{\prime}, \mathrm{w}_{\mathrm{j}}, \mathrm{t}_{\mathrm{j}} ; 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{n}-1\right\}$ and

$$
\mathrm{E}(\mathrm{G})=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{\prime},, \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}^{\prime}, \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}^{\prime}, \mathrm{u}_{\mathrm{j}} \mathrm{w}_{\mathrm{j}}, \mathrm{w}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}, \mathrm{v}_{\mathrm{j}} \mathrm{t}_{\mathrm{j}}, \mathrm{t}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}+1} \text { and } \frac{v_{\frac{n+1}{}} u_{\frac{n+1}{2}} \text { if } \mathrm{n} \text { is odd } \& ~}{2}\right.
$$

Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2 \ldots 16 \mathrm{n}-5\}$ by
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1 ; \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=8 \mathrm{n}+7-6 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}{ }^{\prime}\right)=8 \mathrm{n}+5-6 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(v_{i}\right)=14 n-1-2 i ; 1 \leq i \leq n$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{\prime}\right)=6 \mathrm{n}-4+6 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{\prime}{ }^{\prime}\right)=6 \mathrm{n}-2+6 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(w_{j}\right)=16 n-3-2 j ; 1 \leq j \leq n-1$
$\mathrm{f}\left(\mathrm{t}_{\mathrm{j}}\right)=2 \mathrm{n}-1+2 \mathrm{j} ; \quad 1 \leq \mathrm{j} \leq \mathrm{n}-1$
Let f^{*} be the induced edge labeling of f . Then
$f^{*}\left(u_{i} u_{i}^{\prime}\right)=4 n+4-4 i ; 1 \leq i \leq n$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=4 \mathrm{n}+3-4 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}{ }^{\prime}\right)=4 \mathrm{n}+2-4 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}{ }^{\prime \prime}\right)=4 \mathrm{n}+1-4 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{j}} \mathrm{w}_{\mathrm{j}}\right)=8 \mathrm{n}-1-2 \mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{w}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1}\right)=8 \mathrm{n}-2-2 \mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{j}} \mathrm{t}_{\mathrm{j}}\right)=6 \mathrm{n}-2 \mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{n}-1$
$f^{*}\left(\mathrm{t}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}+1}\right)=6 \mathrm{n}-1-2 \mathrm{j} ; 1 \leq \mathrm{j} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}\right)=\mathrm{f}^{*}\left(v_{\frac{n}{2}+1} u_{\frac{n}{2}}\right)=6 \mathrm{n}-1$
Then the induced edge labels are $1,2 \ldots 8 \mathrm{n}-3$. Hence the theorem.

The Skolem difference mean labeling of a graph G obtained by the subdivision of the parallel edges of a H -graph in $\mathrm{H} \square \mathrm{K}_{2}$ is given in figures 8 and 9 .

Fig 8

LABELING OF SUBDIVIDED GRAPHS

Fig 9

REFERENCES

[1] V.Balaji,D.S.T.Ramesh and A.subramanian, 2007,Skolem Mean Labeling; Bulletin of Pure and Applied Sciences.Vol.26E(No.2):P.245-248
[2] Joseph A.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics,15(2008),\#56.
[3] R.Vasuki and A.Nagarajan, 2009, Some Results on Super Mean Graphs; International Journal of Mathematics and Combinatorics.Vol.3, P82-96

[^0]: * Department of Mathematics, The M.D.T. Hindu College, Tirunelveli-627010, India.

 E-mail:murugan_mdt@yahoo.com,asmani1963@gmail.com
 A subdivision of a graph G is a graph that can be obtained from G by a sequence of edge subdivisions. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling and a detailed survey of many of them can be found in [2]. The concept of Skolem Mean Labeling was introduced in [1].

 In this paper, we define Skolem difference mean labeling and discuss the Skolem difference mean labeling of subdivided graphs.

