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ABSTRACT       

This paper deals with a M
[X]
/(G1,G2)/1 queueing system in which all the customers undergo 

first essential service (FES) and only some of them receive second optional service(SOS) by 

the same server. In addition to this the server is unreliable and hence subjected to random 

breakdowns while in service and the server leaves for single vacation when the system is 

empty. After returning from vacation if there are N or more customers in the system then the 

server does setup work before it starts the service. Explicit analytical expressions for various 

performance measures are derived. A cost model for  the optimal operating N- Policy that 

minimizes the total expected cost per unit time is determined and numerical analysis is carried 

out.  
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Keywords: M
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Introduction 

 In day-to-day life, one encounters numerous examples of queueing situations, where all arriving 

customers require the main service and only some may require the subsidiary service provided by the server. 

K.C.Madhan [1] has done some initial work on the  steady state behaviour of M/G/1 queue with second optional 

service and later Choudhry and Paul [2] extended the results of Madhan [1] to a batch arrival queue under N-

policy. The authors mentioned above have focused on reliable servers. Queueing models with second optional 

service and breakdowns accommodate real world situations more closely. Therefore, it would be practical to 

consider the N-policy for the batch arrival M
[X]

/G/1 queueing system in which the service is unreliable and all 

the arriving customers demand the first essential service (FES) where as only some of them demand the second 

optional service (SOS).  

  There are several vacation policies and this paper deals with single vacation policy. Also the server 

needs a random amount of time for preparatory work which is termed as server’s setup time (or) startup time. In 

this model, it is assumed that after returning from vacation if the server finds N (or) more customers in the 

system then the server is turned on for the start up work of random length D and as soon as the server finishes 

the setup work, the busy period initiates. 
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 The steady state behavior of queue size distribution is analyzed for this model, using the supplementary 

variable technique. Various performance measures such as expected system size and expected length of the 

cycle are also calculated. The PGF of the system size distribution at an arbitrary epoch is derived. The total 

expected cost function per unit time is derived and the optimal value Ns* which minimize the long – run 

average cost under linear cost structure is developed for this model. Numerical analysis is also presented to 

justify the measures calculated for the model.   

 

Model Description 

The M
[X]

/(G1, G2)/1 Queueing System under consideration has the following specification. 

Compound Arrival Process 

 The customers are assumed to arrive in batches according to compound Poisson process with arrival 

rate λ. The number of units arrive at an arbitrary instant is a random variable X whose probability distribution is 

given by Pr(X = k) = gk, k = 1, 2, 3 …  

N-Policy Setup Time and Single Vacation 

 A cycle begins right after the system becomes empty and the server leaves the system for vacation. 

After returning from vacation, if the server finds N (or) more customers present in the system then the server 

takes random amount of setup time for preparatory work before starting the service. The setup time is a random 

variable with finite moments which has the general distribution D(t) and density function d(t). The customers 

arriving during the vacation period and setup period will join the queue and wait for their turns. If the server 

returning from vacation finds less than N customers in the system then he stays idle in the system   (i.e.) the 

server takes only single vacation. The period during which the server remains idle in the system to start the 

preparatory work after returning from vacation is called build up period. The vacation time follows the general 

distribution V(t) with finite moments and density function v(t). 

Busy Period and Server’s Breakdown 

 Immediately after the setup time the busy period starts and customers are served one by one according 

to FCFS queue discipline. During busy period the server provides each unit two types of heterogeneous services 

of which, one is optional. (i.e.) the server provides first essential service (FES) to all the arriving customers and 

after the completion of FES the customers may leave the system with probability (1 – r) (or) may opt for the 

SOS with probability r (0 ≤ r ≤ 1). During the services (FES (or) SOS) the server may undergo breakdowns 

according to the Poisson process with rates ai, i = 1, 2. Whenever the breakdowns occur the server is sent 

immediately for repair and the repair times follow the general distributions Ui(t), i = 1, 2 with finite mean and 

variance. Once the server gets repaired, he is sent back to the service facility to resume the service. Thus the 

vacation period, setup period, busy period and break down periods constitute a cycle. It is also assumed that the 

arrival processes, vacation time, service time and setup time are independent of each other. The model described 

above is depicted in figure I. 

Steady State System Size Equations 

 To obtain the steady state system size equations of the model using supplementary variable technique, 

we employ the remaining service time, the remaining setup time and the remaining vacation time of the server 

as the supplementary variables. The following notations and probabilities are used to derive the steady state 

equations of the model. 

N - threshold 

λ - group arrival rate 

X - arrival size random variable 

gk - Pr(X = k), k = 1,2,3…    
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αk (hk) - probability that k customers arrive during a vacation                                      

(setup time) , k = 0, 1, 2 … 

X(z) - the probability generating function (PGF) of X 
)i(

kg  - i-fold convolution of {gk} with itself and 
)0(

0g  = 1 

ai - Poisson breakdown rate corresponding to the i
th

 phase of service, i = 1, 2 

Ui - repair time corresponding to the breakdown ai. 

N(t) - the system size including one in service at time t. 

Let the abbreviations C.D.F, p.d.f, LST respectively denote cumulative density function, probability density 

function, Laplace Stieltjes transform of the random variables (R.V.). 

 

 

 

 

 

 

 

 

The server’s states are denoted by the random variable 

 Y(t)  =  

















 tat time state setup in the isserver   theif   5, 

SOSin customer  thedown with  isserver   theif   4, 

SOSbusy with  isserver   theif,   3 

FESin customer  adown with  isserver   theif   2, 

FESbusy with  isserver   theif   1, 

non vacatio isserver   theif   0, 

period buildup during idle isserver   theif  1,-

 

 
 

 

 

FIGURE I

 R.V C.D.F p.d.f LST 
Remaining time 

of the R.V. at t 

FES S1 S1(t) s1(t) ∗
1S (θ) 

0
1S (t) 

SOS S2 S2(t) s2(t) ∗
2S (θ) 

0
2S (t) 

Vacation time V V(t) v(t) )(V θ∗
 

V
0
(t) 

Setup time D D(t) d(t) )(D θ∗
 

D
0
(t) 

Repair time Ui Ui(t) ui(t) ∗
iU (θ) 

0
iU (t), i = 1, 2 
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 The state of the system at time t can be described by the Markov process. 

K(t) =    {(Y(t), N(t), )t(S0
i , ),(0 tU i V

0
(t), D

0
(t)), t ≥ 0, i = 1, 2} 

The transient state system size probabilities are defined by : 

Rn(t)   = Pr(Y(t) = − 1, N(t) = n), n = 0 to N – 1  

Qn(x,t) dt   = Pr{Y(t) = 0 ; N(t) = n, x ≤
  

V
0
 (t)

  
≤ x + dt},   n ≥ 0 

Pn1(x, t) dt       =  Pr(N(t) = n, x ≤ )t(S0
1 ≤ x + dt, Y(t) = 1),      n ≥ 1 

Pn2(x, t) dt    = Pr(N(t) = n, x ≤ )t(S0
2 ≤ x + dt, Y(t) = 3),    n ≥ 1 

Bn1(x, y, t) dt   =  Pr(N(t) = n, )t(S0
1 = x, y ≤ )t(U0

1 ≤ y + dt, Y(t) = 2),   n ≥ 1   

Bn2(x, y, t) dt   =  Pr(N(t) = n, )t(S0
2 = x, y ≤ )t(U0

2 ≤ y + dt, Y(t) = 4),   n ≥ 1  

Dn(x, t) dt       = Pr(N(t) = n, x ≤ D
0
(t) ≤ x + dt, Y(t) = 5),    n ≥ N 

Steady State Equations 

 Under the steady state, the system size probabilities are assumed to be independent of time and the steady 

state equations are given by, 

λ R0 = Q0(0)                           (1) 

λ Rn = Qn(0) + λ ∑
=

−

n

1k

knR gk,  1 ≤ n ≤ N – 1                                  (2) 

dx

d−
P11(x) = − (λ + a1) P11(x) + (1 – r) P21(0) s1(x) + B11(x, 0) + P22(0) s1(x)   (3) 

                                                    

  
dx

d−
 Pn1(x)  = − (λ + a1) Pn1(x) + (1 – r) Pn+11(0) s1(x)  

  + Bn1(x, 0) + Pn+12(0) s1(x) + λ )x(P 
1n

1k

1kn∑
−

=
− gk, 2 ≤ n ≤ N – 1  

                                                                                                            (4) 

dx

d−
 Pn1(x) = − (λ + a1) Pn1(x) + (1 – r) Pn+11(0) s1(x) + Bn1(x, 0)  

   + Dn(0) s1(x)+ Pn+12(0) s1(x) + λ )x(P 
1n

1k

1kn∑
−

=
− gk,   n ≥ N       (5) 

dx

d−
 P12(x) = − (λ + a2) P12(x) + r P11(0) s2(x) + B12(x, 0)            (6) 

dx

d−
 Pn2(x) = − (λ + a2) Pn2(x) + r Pn1(0) s2(x) + λ )x(P 

1n

1k

2kn∑
−

=
− gk  

 + Bn2(x, 0),      n ≥ 2                  (7) 

dx

d−
 Q0(x) = − λ Q0(x) + (P11(0) (1 – r) + P12(0)) v(x)             (8) 

dx

d−
 Qn(x) = − λ Qn(x) + λ )x(Q 

n

1k

kn∑
=

− gk, n ≥ 1                                 (9)   
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dx

d−
 DN(x) = − λ DN(x) + QN(0) d(x)+ λ ∑

=
−

N

1k

kNR gk d(x),                          (10) 

dx

d−
 Dn(x) = − λ Dn(x) + Qn(0) d(x) + λ ∑

+−=
−

n

1Nnk

knR gk d(x) + λ ∑
−

=
−

Nn

1k

knD gk,  

         n ≥ N + 1               (11)                

dy

d−
 B11(x, y) = − λ B11(x, y) + a1 P11(x) u1(y)                                (12) 

dy

d−
 Bn1(x, y) = − λ Bn1(x, y) + a1 Pn1(x) u1(y) + λ ) y,x(B 

1n

1k

1kn∑
−

=
− gk,  n ≥ 2  

                                                  (13)   

dy

d−
 B12(x, y) = − λ B12(x, y) + a2 P12(x) u2(y)                               (14) 

dy

d−
 Bn2(x, y) = − λ Bn2(x, y) + a2 Pn2(x) u2(y) + λ ) y,x(B 

1n

1k

2kn∑
−

=
− gk,  n ≥ 2                       (15) 

                                                    

 LST  definition 

          The following Laplace Stieltjes Transform (LST) are  defined to derive the PGF of the system size 

 )(Pni θ∗
 = ∫

∞
θ−

0

x e Pni(x) dx ;  )(Si θ∗
 = ∫

∞
θ−

0

x e d Si(x), i = 1, 2 

  y),(Bni θ∗
 =  ∫

∞
θ−

0

x e Bni(x, y) dx,  i = 1, 2 

 )(Dn θ∗
 = ∫

∞
θ−

0

x e Dn(x) dx ;  D
∗
(θ)  =  ∫

∞
θ−

0

x e d D(x) 

 )(Qn θ∗
 = ∫

∞
θ−

0

x e Qn(x) dx ;  V
∗
(θ)  =  ∫

∞
θ−

0

x e d V(x) 

 Taking the LST on both sides of equations (3) to (15) and using the properties of LST of differentiation, we 

have, 

θ )(P11 θ∗
 − P11(0)   =  (λ + a1) )(P11 θ∗

 
− (1 – r) P21(0) )(S1 θ∗

 
− )0 ,(B11 θ∗

 
− P22(0) )(S1 θ∗

     (16)                         

                               

θ )(P 1n θ∗
 − Pn1(0)   =  (λ + a1) )(P 1n θ∗

 
− (1 – r) Pn+11(0) )(S1 θ∗

 
− )0 ,(B 1n θ∗

 

     
− Pn+12(0) )(S1 θ∗

 
− λ )(P 

1n

1k

1kn θ∑
−

=

∗
− gk, 2 ≤ n ≤ N – 1              (17)   

θ )(P 1n θ∗
 − Pn1(0)   =  (λ + a1) )(P 1n θ∗

 
− (1 – r) Pn+11(0) )(S1 θ∗

 
− )0 ,(B 1n θ∗

 

   
− Dn(0) )(S1 θ∗

 
− Pn+12(0) )(S1 θ∗

 
− λ )(P 

1n

1k

1kn θ∑
−

=

∗
− gk,    n ≥ N  

                                                                                                                       (18) 

θ )(P12 θ∗
 − P12(0)  =  (λ + a2) )(P12 θ∗

 – r P11(0) )(S2 θ∗

 
− )0 ,(B12 θ∗

                    (19)  
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θ )(P 2n θ∗
 − Pn2(0)  =  (λ + a2) )(P 2n θ∗

 
– r Pn1(0) )(S2 θ∗

 
− λ )(P 

1n

1k

2kn θ∑
−

=

∗
− gk     − ),0 ,(B 2n θ∗

 n ≥ 2                                                                                              

            

                                  (20) 

)(Q 0 θθ ∗
 − Q0(0) = λ )(Q0 θ∗

 − (P11(0) (1 – r) + P12(0)) V
∗
(θ)                (21) 

θ )(Qn θ∗
 − Qn(0) = λ )(Qn θ∗

 − λ )(Q 
n

1k

kn θ∑
=

∗
− gk,  n ≥ 1                            (22) 

θ )(DN θ∗
 − DN(0) = λ )(DN θ∗

 
− QN(0) D

∗
(θ) − λ ∑

=
−

N

1k

kNR gk D
∗
(θ)                    (23) 

θ )(Dn θ∗
 − Dn(0) = λ )(Dn θ∗

 
− Qn(0) D

∗
(θ) 

 
− λ ∑

+−=
−

n

1Nnk

knR gk D
∗
(θ) − λ ∑

−

=

∗
− θ

Nn

1k

kn )(D gk, 

                            n ≥ N + 1                         

                 (24) 

dy

d−
 

∗
11B (θ, y) = − λ 

∗
11B (θ, y) + a1 

∗
11P (θ) u1(y)                           (25) 

dy

d−
 

∗
1nB (θ, y) = − λ 

∗
1nB (θ, y) + a1 

∗
1nP (θ) u1(y) + λ ) y,(B 

1n

1k

1kn θ∑
−

=

∗
− gk,  n ≥ 2  

                                          (26)   

dy

d−
 

∗
12B (θ, y) = − λ 

∗
12B (θ, y)+ a2 

∗
12P (θ) u2(y)                            (27) 

dy

d−
 

∗
2nB (θ, y) = − λ 

∗
2nB (θ, y) + a2 

∗
2nP (θ) u2(y) + λ ) y,(B 

1n

1k

2kn θ∑
−

=

∗
− gk,   n ≥ 2  

                                           (28)   

 The LST with respect to repair time are defined by, 

 ) ,(B 1
1  

ni θθ∗∗
    = ∫

∞
θ−

0

 y 1e )y ,(Bni θ∗
dy  

 )(U 1
1 

i θ∗
           = ∫

∞
θ−

0

 y 1e ui(y) dy 

 Taking the LST on both sides of equations (25) to (28) we have, 

θ1 
1  

11B ∗∗
(θ, θ1) – 

∗
11B (θ, 0) = λ 

1  

11B ∗∗
(θ, θ1) – a1 

∗
11P (θ) 

1 

1U
∗

(θ1)                           (29) 

θ1 
1  

1nB
∗∗

(θ, θ1) – 
∗
1nB (θ, 0) = λ 

1  

1nB
∗∗

(θ, θ1) – a1 
∗
1nP (θ) 

1 

1U
∗

(θ1)             

     − λ ) ,(B 1

1n

1k

1  

1kn θθ∑
−

=

∗∗
− gk,      n ≥ 2                              (30)   

θ1 
1  

12B ∗∗
(θ, θ1) − 

∗
12B (θ, 0) = λ 

1  

12B ∗∗
(θ, θ1) – a2 

∗
12P (θ) 

1 

2U
∗

(θ1)                          (31) 

θ1 
1  

2nB
∗∗

(θ, θ1) – 
∗
2nB (θ, 0) = λ 

1  

2nB
∗∗

(θ, θ1) – a2 
∗
2nP (θ) 

1 

2U
∗

(θ1)           

     – λ ) ,(B 1

1n

1k

1  

2kn θθ∑
−

=

∗∗
− gk,     n ≥ 2                              (32) 
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PGF of the system size probabilities 

      The following partial PGFs for | z | ≤ 1  are defined  to determine the system size distribution. 

 R(z)  = ∑
−

=

1N

0n

nR z
n 

 

 ) ,z(Pi θ∗
 = ∑

∞

=

∗ θ
1n

ni )(P z
n
,  Pi(z, 0)  =  ∑

∞

=1n

ni )0(P z
n
, i = 1, 2 

 D
∗
(z, θ)  = ∑

∞

=

∗ θ
Nn

n )(D z
n
 , D(z, 0)  =  ∑

∞

=Nn

n )0(D z
n
 

 Q
∗
(z, θ)  = ∑

∞

=

∗ θ
0n

n )(Q z
n
 , Q(z, 0)  =  ∑

∞

=0n

n )0(Q z
n
 

 ) , ,z(B 1
1  

i θθ∗∗
  =   ∑

∞

=

∗∗ θθ
1n

1
1  

ni ) ,(B z
n
 

 )0 , ,z(B i θ∗
   =   ∑

∞

=

∗ θ
1n

ni )0 ,(B z
n
,  i = 1, 2 

 Identities 

Here some important identities used in this paper are listed out. 

* ∑
∞

=1n

nz  







θ∑

−

=

∗
− k

1n

1k

2kn g )(P   =   







θ∑

∞

=

∗

1n

n
n2 z )(P 








∑
∞

=1k

k
k z g  

  = ) ,z(P2 θ∗
 X(z) 

* ∑
∞

=2n

nz  







θ∑

−

=

∗
− k

1n

1k

1kn g )(P   =   







θ∑

∞

=

∗

1n

n
n1 z )(P 








∑
∞

=1k

k
k z g  

  = ) ,z(P1 θ∗
 X(z) 

* ∑
∞

=2n

nz  







θθ∑

−

=

∗∗
− k1

1n

1k

1  
1kn g ) ,(B  =   








θθ∑

∞

=

∗∗

1n

n
1

1  
n1 z ) ,(B 








∑
∞

=1k

k
k z g  

  = ) , ,z(B 1
1  

1 θθ∗∗
 X(z) 

* ∑
∞

=Nn

nz  







∑

+−=
− k

n

1Nnk

kn g R  + ∑
−

=

1N

1n

nz 







∑
=

− k

n

1k

kn g R   

  =   







∑
−

=

1N

0n

n
n z R  








∑
∞

=1k

k
k z g  

  = R(z) X(z) 

*      
dz

d
 

1z

XX

)z(X1

))z(W( V))z(W(D1

=

∗∗












−

−
=  

2

)]E(V E(V) E(D) 2)[E(D E(X) 222 ++λ
 

*      
dz

d
 

1zX

XX

)z(W

)))z(W(V(1 ))z(W(D

=

∗∗










 −
=  










+λ  E(D) E(V)

2

)E(V 
 E(X) 

2
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*      
dz

d
 

1zX

X

)z(W

))z(W(D1

=

∗










 −
=  

2

)E(D E(X) 2λ
 

 

Steady state solutions  

The closed form expressions after extensive simplification for D
∗
(z, θ) and Q

∗
(z, θ) are as follows. 

Q
∗
(z, θ)  =  

)z(W

))(V))z(W((V )0(P

X

X1

−θ

θ− ∗∗

                                 (33) 

D
∗
(z, θ)  =  

)z(W

))(D))z(W((D 

X

X

−θ

θ− ∗∗

 (P1(0) V
∗
(WX(z)) – R(z) WX(z))      (34)  

Using the equations (19) and (20) and (29) to (32), we get 

)0 , ,z(B i θ∗
      =  ai ) ,z(Pi θ∗ (z))W(U X

1 
i
∗

                                (35) 

) , ,z(B 1
1  

i θθ∗∗
  =  

(z)Wθ

))(θU(z))(W(U θ) (z,P a

X1

1

1 

iX

1 

iii

−

− ∗∗∗

, i = 1, 2              (36) 

  

) ,z(P1 θ∗
 =  

)))z(W(h( ))z(H z(

))(S))z(W((H                                

 (z)) WR(z) ))z(W(D)1 ))z(W( V))z(W(D( )0(P(z

Xa

1Xa

XXXX1

1

1

−θ−

θ−

−−

∗

∗∗

∗∗∗

       

                                                                                                                                       (37) 

) ,z(P2 θ∗
  =  

)))z(W(h( ))z(H z(

))(S))z(W((H  (z)) WR(z) ))z(W(D               

 )1 ))z(W( V))z(W(D( )0(P( ))z(W(H z r

Xa

2XaXX

XX1Xa

2

2

1

−θ−

θ−−

−

∗

∗∗∗

∗∗∗

           

             (38) 

 where P1(0) = P11(0) (1 – r) + P12(0) , WX(z)=  λ (1 – X(z)),     

 H
∗
(z)  =  

∗
1a

H (WX(z)) ((1 – r) + r 
∗
2a

H (WX(z))) ,   
∗

iaH (WX(z))    =  
∗
iS (

iah (WX(z))) 
  

 and 

iah (WX(z))    =  WX(z) + ai(1 – 
1 

iU
∗

(WX(z))),   i = 1, 2         

Then equations (33), (34),(36), (37) and (38) at θ = θ1 = 0 respectively give, 

Q
∗
(z, 0)  =  

)z(W

)0(P )))z(W(V1(

X

1X
∗−

                                                            

            

D
∗
(z, 0)  =   

)z(W

))z( W)z(R))z(W( V)0((P )))z(W(D1(

X

XX1X −− ∗∗
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, i = 1, 2                                                      
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1
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∗∗∗

−

−−

−

                  

 Let PB(z)  =  ∑
=

∗
2

1

i )0 ,((P 
i

z  + ))0 ,0 ,(1  zBi
∗∗

 

 Then  PB(z)  =  
))z(H(z )z(W

))z(H(1 (z) z 

X
∗

∗

−

−φ−
                                                                 

where  φ(z) =  P1(0) ((1 – D
∗
(WX(z)) V

∗
(WX(z))) + D

∗
(WX(z)) R(z) WX(z))  

                                                        

Let PΙ(z) gives the PGF of the system size probabilities when the server is idle.  

Then  PΙ(z)  = Q
∗
(z, 0)+ D

∗
(z, 0) + R(z) 

PΙ(z) = 
)z(W

)0(P )))z(W(V1(

X

1X
∗−

 + 
)z(W

))z( W)z(R))z(W( V)0((P )))z(W(D1(

X

XX1X −− ∗∗

+ R(z) 

                                     

  To calculate R(z),for 0 ≤ n ≤ N – 1, let Π0 = 1 and Πn = ∑
=

n

1i

ig Πn-i  ; Ψ0 = α0 and Ψn = ∑
=

n

i 0

i α Πn−i 

       Using equations(1) and (2) we get  

                R(z)    =  
λ

)0(1P
 ∑

−

=

ψ
1N

0n

n z
n
  =  P1(0) Ψ(z),   where Ψ(z)    =  

λ
1

 ∑
−

=

ψ
1N

0n

n 

 

Then PΙ(z) =
)z(W

)z(

X

φ
  

  If P(z) denotes the total probability generating function of the number of customers in the system        in steady 

state, then, 

 P(z)   =  PB(z) + PΙ(z). 

  =  
))z(Hz( (z)W

)z(H )1z( )z(

X
∗

∗

−

−φ
, where φ(z) involves the unknown P1(0) and this can be calculated 

using the normalizing condition P(1) = 1      

And P1(0)  =  

∑
−

=

++

−
1

0

n
 )()(

1

N

n

c

VEDE
λ

ψ
ρ

 

 where ρc  =  λ E(X) E(Hc), E(Hc)  = E(S1) (1 + a1 E(U1)) + r E(S2) (1 + a2 E(U2)) 

Substituting for P1(0) in P(z) we have, 
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Performance Measures 

 In this section, the probability that the server is on vacation (PV), in busy period (PBusy), in breakdown state 

(PBr) and in setup state (PD) are calculated. 

i. PV =  the probability that the server is on vacation                               

  =  E(V) P1(0), where P1(0) = P11(0) (1 – r) + P12(0)               

ii. PBusy =  the probability that the server is busy 

  =  λ E(X) (E(S1) + r E(S2)) = ρBusy,        

iii. PBr =  the probability that the server is in break down state 

  =  
1z

lt
→

 0)) 0, ,z(B0) 0, ,z(B( 21
∗∗ +  

 PBr =  λ E(X) (E(S1) a1 E(U1) + r E(S2) a2 E(U2)) = ρBr                                                                                          

                                                                                                      

               Note that PBusy + PBr  =  λ E(X) E(Hc) =  ρc                                                                               

iv. PD =  the probability that the server is doing his setup work  

      =  E(D) P1(0)                                                             

Mean system size 

 Let LN denote the expected system size of the unreliable M
[X]

/G/1 queue with N-policy, single vacation and 

setup time. 

 Then LN  =  

1

)(P 
=










z

z
dz

d
       . 

By calculation, LN   =  
)1(2

)E(H ))1E(X(X )E(H E(X)) (
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22
21N
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nn

   E(V))(E(D) 

))E(V  E(V) E(D) 2)(E(D  
2

E(X) 
  n    E(D) E(X) 

   

Expected Cycle Length 

 Let E(TN), E(B), E(Tc), E(Br), E(D) and E(C) represent the expected idle period, expected busy period, 

expected cycle, expected break down period, expected setup period and the expected completion period 

respectively.Then the long-run fraction of time the server is idle and busy are given by, 

 
)T(E

)T(E

cy

N
  = PΙ =   E(V) P1(0) 

 
)T(E

)B(E

cy

 = PBusy = ρBusy 
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)T(E

)Br(E

cy

 = PBr = ρBr 

 
)T(E

)D(E

cy

 = PD = E(D) P1(0) 

 From the above calculations E(Tcy) = 
)0(P

1

1
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c
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DE

ρ
λ
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−

++ ∑
−

=

1

  E(V))(
1N
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 Then E(C) =   Expected completion period 

     =   E(B) + E(Br) 

     =    (ρBusy + ρBr) E(Tcy) 

     =   

c

c

1 ρ−

ρ
 




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


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−
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Optimal Design of N-policy with Single Vacation 

 In this section, the total expected cost function per unit time for the model to calculate the optimal value 
∗
SN  which minimizes the linear cost function is developed. A cost structure that has been widely used in literature is 

employed. 

Let 

 Cy - turn on cost per cycle 

 Ch - holding cost per unit time  

 CD - setup cost per unit time 

 CV - reward per unit time due to vacation 

 CBusy - operating cost per unit time 

  CBr - breakdown cost per unit time  

 Tc(N) - total average cost per unit time 

 CΙ - idle cost per unit t 

Then Tc (N) =  
)E(T

]E(V)  )E(T E(D) [

cy
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+ Ch +NL CBusy PBusy + CBr PBr 

          =  

∑
−

= λ

ψ
++

ρ−
1N

0n

n

c

  )]V(E)D(E[

1
 








−++ ∑

−

=
Ι E(V)     E(D) 

1N

0

n
V

n

Dy CCCC
λ

ψ
 +  

       Ch 



























++

++

+







+

+

∑

∑ ∑

−

=

−

=

−

=

   E(V))  (E(D) 

))E(VE(V) )(2                                                     

)(E(D 
2

)(
n    E(D) E(X) 

1N

0

n

2

2
21N

0

1

0

nn

1

n

n

N

n

DE

XE

L

ψλ

λ
ψψλ

   + CBusy ρBusy + CBr ρBr 
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Theorem    

 Let 
∗
SN  be the optimal threshold value of N that minimizes the average cost per unit time Tc(N)  under the 

cost structure mentioned. Then 
∗
SN of the model is given by, 

∗
SN =  min 





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
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
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Proof 

By calculation, )1( +kT Sc  − )(kT Sc   = 

1kk

k

C C +

ψ
 (h(k)),      

where h(k) = − A + λ (E(D) + E(V)) (CBusy (1 – ρc) + λ E(X) E(D) Ch + k Ch) + Ch ∑
=

ψ−
k

0n

n )n(k  

The sign of h(k) determines whether Tc(k) increases (or) decreases. 

If k be the first integer such that h(k) > 0, then 

h(k + 1)  =  h(k) + Ch(λ (E(D) + E(V))) + Ch Ψn 

                  > 0 

 This implies h(k + 1) > 0 whenever h(k) > 0 

 Therefore 
∗
SN   =  first k,for which h(k) > 0 

(i.e.) 
∗
SN  =  min {k>1/h(k)>0} 
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NUMERICAL ANALYSIS 

 

 Numerical results are provided for,  

(i) expected number of customers waiting in the system ( NL ) 

(ii) the optimal value N
∗
 of N 

(iii) the total expected cost per unit time (Tc(N)) 

(iv) expected busy period E(B) 

(v) expected length of the cycle E(Tcy) for the model. 

For the computation work of the model, we make the following assumptions: 

• The batch size X follows the geometric distributions (i.e.) gk = Pr (X = k) = (1 – p) p
k−1

, k ≥ 1, with mean E(X) 

=  
p1

1

−
 

• The service time S of each stage follows two-stage hyper exponential distributions whose measures are the 

following : 

The mean of Si, i = 1, 2 are E(S1) = 

11

1a

µ
 + 

12

2a

µ
 and E(S2) = 

21

1b

µ
 + 

22

2b

µ
 

The second order moment of Si, i = 1, 2 are 

E )S( 2
1  = 2  






µ2
11

1a
 + 






µ2
12

2a
 and   E )S( 2

2  = 2  





µ2
21

1b
 + 






µ2
22

2b
  

• The set-up time D and vacation V follow Erlang 3-type distributions with mean E(D) = 
γ
1

, E(V) = 
η
1

 and the 

second order moments E(D
2
) = 

23

4

γ
 and E(V

2
) = 

23

4

η
. 

• The repair time follows exponential distribution with parameters βi, i = 1, 2 

Ch = 10, CD = 250, Cy = 200, CV = 1, CBusy = 100, CBr = 5. 

The parameters ai, bi, i = 1, 2 are the same for all the tables. a1 = 0.1, a2 = 1.5, b1 = 2, b2 = 3. 

  

In Table (1), it is verified that as the arrival rate λ increases, the optimal expected system size and the total 

expected cost  also increase. The expected length of the cycle and the corresponding utilization factor ρ and ρh are 

also given in the table for particular values of p, γ and η. 
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      Table – 1                                          p = 0.01, γγγγ = 0.3, ηηηη = 0.1 
∗Ns  )( CyTE

 

NL  )( NTC
 

ρ ρh 

0.25 7 0.0214 4.7058 92.3929 0.2062 0.4124 

0.31 5 0.0291 5.2337 105.6724 0.2557 0.5114 

0.37 4 0.0143 6.9628 126.3522 0.3052 0.6104 

0.45 4 0.0132 11.7416 173.7736 0.3712 0.7424 

0.5 4 0.0105 18.1998 237.4419 0.4124 0.8249 

In queueing models, it is obvious that, if  the mean service time is reduced, the expected queue size will be 

reduced. E(S) = E(S1) + r ∗ E(S2) = 




µ11

1a
 + 





µ12

2a
 + r 





µ21

1b
 + 





µ22

2b
 can be reduced by increasing any one of 

the µij values. Then to justify the statement, that queue length is an increasing function of the mean service time 

E(S), for increasing values of µij the measures are calculated. The optimal total cost of the system and the expected 

busy period are also presented in each table. The value of r is fixed in tables (2) to (5) as r = 0.3. 

E(S2) = 7, p = 0.01 

Table – 2                                       µµµµ11 = 1.5, µµµµ21 = 2, µµµµ22 = 0.5 

µ12 
E(S) 

∗
SN               

E(B) 
NL  )(NTC  ρ ρh 

0.81 4.0184 1 114.4432 28.2754 338.1308 0.4844 0.9689 

0.83 3.9738 1 64.7710 16.8881 226.3452 0.4732 0.9464 

0.85 3.9313 1 45.1903 12.3868 183.3204 0.4624 0.9249 

1 3.6666 3 28.9075 5.9391 116.3661 0.3956 0.7912 

1.3 3.3204 4 15.4381 4.4027 99.5371 0.3082 0.6164 

E(S1) = 0.8166 

Table – 3                                       µµµµ11 = 1.5, µµµµ12 = 2, µµµµ22 = 0.5 

µ21 E(S) ∗
SN

 

E(B) 
NL  )(NTC

 

ρ ρh 

0.5 5.8 6 35.9684 12.1108 112.4507 0.4853 0.9807 

1 3.2166 6 28.5709 10.8934 93.0612 0.4671 0.9489 

1.5 3.0165 4 21.3217 8.6034 82.8101  0.3782 0.8091 

2 2.9166 5 14.4494 6.7809 72.8520 0.3391 0.7925 

2.5 2.8566 5 9.2149 5.3628 67.1350 0.2034 0.4068 
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 It is shown in Tables (4) and (5) that the expected queue length can be decreased by reducing the setup time 

E(D) and reducing the vacation time E(V). The fixed values of λ = 0.25 and p = 0.2 are considered to justify the 

result. 

 

 Table – 4    ηηηη = 0.1         

γ E(D) ∗
SN  NL  )(NTC  

0.01 100 2 24.7269 384.3603 

0.03 33 7 12.0618 223.6921 

0.05 20 7 9.3591 182.0197 

0.1 10 6 7.0617 142.8269 

0.3 3.3333 5 4.0055 89.7542 

 

 

Table – 5                                                γγγγ = 0.3 

η E(V) ∗
SN  NL  )(NTC  

0.01 100 17 18.4688 211.6438 

0.02 50 9 10.0110 132.3620 

0.03 33.3333 7 7.2221 108.9538 

0.05 20 5 5.0678 94.4087 

0.1 10 4 3.7140 89.8612 

The values of Table(6) give the optimum value N
∗
 of N and the minimum optimal expected cost for the N-

policy queueing model corresponding to different cost structure. 

Table – 6 

(γγγγ, a1, a2, b1, b2, µµµµ11, µµµµ12, µµµµ21, µµµµ22, ηηηη) = (0.3, 0.1, 1.5, 2, 3, 1.5, 2.0, 6, 0.5, 0.1) 

Case  :  1   Ch = 5, CD = 250, CBusy = 100 

(λ, p) (.1, .2) (0.15, 

0.23) 

(.2, .26) (.25, .29) (.3, .32) 

∗
SN  9 10 10 9 7 

)( NTC  66.8890 82.7920 97.3215 112.7271 137.0123 

Case  :  2   Ch = 15, CD = 500, CBusy = 150 

(λ, p) (.1, .2) (.15, .23) (.2, .26) (.25, .29) (.3, .32) 

∗
SN  7 8 7 7 5 

)( NTC  143.1425 179.2090 212.715 251.6618 321.6875 

Case  :  3   Ch = 25, CD = 750, CBusy = 200 

(λ, p) (.1, .2) (.15, .23) (.2, .26) (.25, .29) (.3, .32) 

∗
SN  6 7 7 6 5 

)( NTC  218.5567 273.9759 326.5689 389.6246 505.7298 
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Case  :  4                             Ch = 35, CD = 1000, CBusy = 250 

(λ, p) (.1, .2) (.15, .23) (.2, .26) (.25, .29) (.3, .32) 

∗
SN  6 7 7 6 5 

)( NTC  293.2836 368.7054 440.4227 527.3215 689.7720 

 The following table values justify the procedure (given in the theory) of finding the optimal values N
∗
 of N 

for this model. The parametric values assumed to obtain the optimal values N
∗
 are mentioned in the following table. 

Table – 7 

p = 0.03, a1 = 1.5, a2 = 2, b1 = 2.5, b2 = 3.5, µµµµ11 = 2, µµµµ12 = 2.5, µµµµ21 = 3, µµµµ22 = 4, λλλλ= 0.15, Ch = 5,  

 

 

 

CD = 4000, CBusy = 100, Cy = 250, CV = 5, CBr = 8     

 

N NL  )( NTC  

3 3.7082 67.3904 

4 4.1582 65.2486 

N
∗∗∗∗ 5 4.6283 64.8336 

 
6 5.1080 65.3364 

7 5.5932 66.3825 

Conclusion 

 

This is an extension of the work on Non- Markovian queueing system combining N - Policy with setup 

time and vacation,carried out by several researchers including Medhi and Templeton [5], Minh [6], Lee and 

Park [4], Lee et al. [7], Hur and Paik [8]. But these authors have focused only on reliable servers. In this 

paper, for the Non- Markovian unreliable queueing system with 

N- Policy,second optional service,setup time and vacation,the PGF of the system size is presented in closed 

form.Further, various performance measures are derived and the numerical analysis is carred out to verify 

that the mean system size is an  increasing function of arrival rate λ, decreasing function of service rate µ, 

setup rate γ and vacation parameter η. Further the optimal value of N that minimizes the total cost is 

calculated numerically for various parametric values and the procedures given above are justified.  
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