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Abstract 
 

The aim of this work is to determine the unknown temperature, displacementand thermal 

stresses on the upper surface of a circular plate subjected to an interior heat flux is known 

under unsteady-state field. The lower surface is kept at zero temperature and the fixed 

circular edge is thermally insulated. The governing heat conduction equation has been solved 

by using the Hankel and Laplace transform technique. The results are obtained in series form 

in terms of Bessel’s functions and results have been computed numerically and illustrated 

graphically. 

 

1. Introduction 

As known, thermal behaviors of structures must be considered in many situations. Study of thermal effect on 

deformations and stresses of a plate, especially a circular plate is increasingly important. Firstly, the problems of 

circular plates are more complicated and thus more attractive to many scientists. Secondly, there are practical 

requirements for thick plates in various modern projects, such as high building, raceway, high-way, container 

wharf, and so on. 

 Ashida et al. [1] discussed the inverse transient thermoelastic problem for a composite circular plate. 

Tikhe et al. [2] solved an inverse heat conduction problem in a thin circular plate and its thermal deflection. 

Deshmukh et al. [3] are also discussed on an inverse transient problem of quasi-static thermal deflection of a 

thin clamped circular plate. Grysa et al [4] studied the one dimensional problem of temperature and the heat flux 

at the surface of a thermo elastic slab. Kulkarni et al. [5] studied an inverse transient 

problem of quasi-static thermal stresses in a thick circular plate. Also Roy Choudhary [7] 

studied a rate of quasi-static stress in a thin circular plate due to transient temperature applied along the 

circumference of a circle over the upper face. 

 Here an attempt is made to solve an inverse unsteady-state thermoelastic problem in a circular plate to 

determine the unknown temperature, displacement and stress components on the upper surface ( )z h= of a 

circular plate subjected to an interior flux    ( ),f r t  is known under unsteady-state field. The lower surface 

( )z h= − is kept at zero temperature and the fixed circular edge ( )r a=  is thermally insulated. The 

governing heat conduction equation has been solved by using the Hankel and Laplace transform technique. The 

results are obtained in series form in terms of Bessel’s functions and results have been computed numerically 

and illustrated graphically. 

 This paper contains new and novel contribution of stresses in circular plate under steady state. The 

results presented here will be more useful in engineering problem           ---------------------- 

*2000 Mathematics Subject classifications: Primary 35A25, secondary 74M99, 74K20. 
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particularly in the determination of the state of strain in circular plate constituting foundations of containers for 

hot gases or liquids, in the foundations for furnaces etc. 

 

2. Statement of the problem 
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 Consider a circular plate of radius a and thickness 2h  occupying spaceD : 0 r a≤ ≤ , 0 z h≤ ≤ . Initially 

the plate is at zero temperature. Let the plate be subjected to an interior heat flux  ( ),f r t  is known within 

region h z h− ≤ ≤ .The lower surface ( )z h= −  is kept at zero temperature and the fixed circular edge 

( )r a=  is thermally insulated. Assume that the boundary of the circular plate is free from traction. Under 

these more realistic prescribed conditions, the unknown temperature ( ),g r t  which is at the upper surface of 

the plate and the thermal stresses due to unknown temperature ( ),g r t  need to be determined. 

The differential equation governing the displacement potential function is given in [6] as, 

      

2 2

2 2
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φ φ φ
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∂ ∂ ∂
+ + = Κ

∂∂ ∂
                                                            (1)                                                                       

where K is the restrain coefficient and the temperature change is given by  iT Tτ = −  where iT  is the initial 

temperature. The displacement function φ  is known as Goodier’s thermoelastic potential. 

 The unsteady state temperature of the plate at time t satisfies the heat condition equation is,  
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where k  is the thermal diffusivity of the material of the plate. 

The initial and boundary conditions are  

0( , , )T r z t =   at 0t = ,                                                                                                   (3) 

The boundary condition  
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The stress functions rr
σ and θθσ  are given by, 
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where µ is the Lame’s constant, while each of the stress functions ,
rz zz

σ σ and  

zθσ are zero within the plate in the plane state of stress. The equations (1) to (9) constitute the mathematical 

formulation of the problem under consideration. 

 

3. Solution of the Problem 
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Applying finite Hankel transform defined in [8] to the Eq. (2) to Eq. (7), one obtain 

2 12
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d T d T
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k d td z
λ− =                                                                                                (10) 

with boundary conditions 
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where T denotes the Hankel transform of T  and nλ  is the Hankel transform parameter. Again applying 

Laplace transform defined in [8] to the Eq. (10) to Eq. (14) .we get, 
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where T
∗
denotes the Laplace transform of T and s  is the Laplace transform parameter. 

 The Eq. (15) is a second order differential equation, whose solution is given by, 

( , , )
qzqz

nT z s A e Beλ
−∗ = +                                   (18) 

 where A and B are constants. 

Using Eq.(16) and Eq.(17) in Eq.(18) we obtain the values of A and B. Substituting these values in Eq.(18) and 

then inversion of finite Laplace and finite Hankel integral transform leads to, 
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since 0,
i
T =  the temperature change is .T T T

i
τ = − =  

 

3. Determination of Thermoelastic Displacement 

On putting the values of temperature ( , , )T r z t  from Eq. (19) in Eq. (1), one obtain the thermoelastic 

displacement function ( , , )r z tφ as, 
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The radial displacement U as, 
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4. Determination of Stress functions 

Using Eq. (21) in Eq. (8) and Eq. (9), the stress functions are obtained as, 
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5. Numerical Calculation 
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Numerical calculations have been carried out for a steel (SN 50C) plate with parameters 

chosen 1 , 1 ,
2
h

a m h m ξ= = =  , 10sec.t = The thermal diffusivity is given by   

6 2 1
15.9 10 ( )k m s−×= . The Poisson ratio by 0.281ν =  and 

1 1
59.0Wm Kλ − −= . 

The transcendental roots of 1( )nJ aλ  as in [9] are 1 3.8317J = , 2 7.0156J = , 3 10.1735J = , 

4 13.3237,J = 5 16.470,J = 6 19.6159J = .  

For convenience, we get 
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nn
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nn
C Bµ Κ=  

These values are used to evaluate the temperature, displacement, stress components and thermal stresses given 

by Eqs.21-25 these have been computed numerically and illustrated graphically with help of a computer 

programme. 

 

6. Concluding Remarks 

In this article, we study an inverse unsteady-state thermal stresses in a circular plate. We develop the analysis 

for the temperature field by introducing the methods of the Hankel transforms and Laplace transforms and 

determine the unknown temperature, displacement, stress components on the upper surface. 

From fig.1 and fig.2, we observe that temperature decreases from lower surface to outer circular surface in 

radial direction. Also it decreases from upper surface to lower surface in radial direction. From fig.3 & fig.4 

thermoelastic displacement decreases from inner circular surface to outer circular surface in axial direction. Also 

it increases from lower surface to upper surface. From fig.5 & fig.6 stress function develops the tensile stresses 

in radial direction and also decreases to lower surface. From fig.7 & fig.8 stress function decreases from inner 

circular surface to outer circular surface in axial direction and it develops the tensile stresses in radial direction.  
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Fig.1   The temperature distribution T(r,z,t) In 

radial direction 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.2   The temperature distribution T(r,z,t) in 

axial direction 

 

 

 

 

 

 

 

 

 

 

 
Fig.3   The displacement function U(r,z,t) in 

radial direction 

 

 
 

Fig.5   The stress  function rrσ in radial 

direction 
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Fig.7. The stress function θθσ  in radial 

direction 

 
 

Fig.4   The displacement function U(r,z,t) in 

axial direction 

 

 

 

Fig.5   The stress  function rrσ in axial 

direction 

 

 

 

Fig.8. The stress function θθσ  in axial 

direction 
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