Sufficient Conditions for Univalence of an Integral Operator Defined by Generalized Differential Operator

M. Thirucheran
Department of Mathematics
L.N.Govt. College (Autonomous)
Ponneri-601 204, Tamilnadu, India
thirucheran@yahoo.co.in

Abstract

In this paper, we investigate the univalence of an integral operator defined by generalized differential operator.

2000 AMS Subject Classification: 30C45.

Keywords and Phrases: Analytic function, Hadamard product (convolution), the generalized hypergeometric function.

1. Introduction

Let A denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathrm{U}:\{z \in \mathrm{C}:|z|<1\}$, and $S:=\{f \in \mathrm{~A}: f$ is univalent in U$\}$.
For functions f given by (1.1) and g given by $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, the Hadamard product (or convolution) of f and g is defined by

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}
$$

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{s}(q, s \in \mathrm{~N} \cup\{0\}, q \leq s+1)$ be complex numbers such that $\beta_{k} \neq 0,-1,-2, \ldots$ for $k \in\{1,2, \ldots, s\}$. The generalized hypergeometric function ${ }_{q} F_{s}$ is given by

$$
{ }_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{q}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots\left(\beta_{s}\right)_{n}} \frac{z^{n}}{n!}
$$

where $(x)_{n}$ denotes the Pochhammer symbol defined by

$$
(x)_{n}=x(x+1) \ldots(x+n-1) \text { for } n \in \mathrm{~N} \text { and }(x)_{0}=1 .
$$

Corresponding to a function $G_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right)$ defined by

$$
G_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right)=z_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)
$$

For $f \in \mathrm{~A}, \mathrm{C}$. Selvaraj [1] introduced the following generalized differential operator:

$$
\begin{equation*}
D_{\lambda \mu}^{0}\left(\alpha_{1}, \beta_{1}\right) f(z)=f(z) * G_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right) \tag{1.2}
\end{equation*}
$$

$$
\begin{align*}
D_{\lambda \mu}^{1}\left(\alpha_{1}, \beta_{1}\right) f(z)= & D_{\lambda \mu}\left(\alpha_{1}, \beta_{1}\right) f(z) \tag{1.3}\\
= & \lambda \mu z^{2}\left(f(z) * G_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right)\right)^{\prime \prime}+(\lambda-\mu) z\left(f(z) * G_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right)\right)^{\prime} \\
& \quad+(1-\lambda-\mu)\left(f(z) * G_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right)\right),
\end{align*}
$$

and

$$
\begin{equation*}
D_{\lambda \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)=D_{\lambda \mu}\left(D_{\lambda \mu}^{m-1}\left(\alpha_{1}, \beta_{1}\right) f(z)\right) \tag{1.4}
\end{equation*}
$$

where $0 \leq \mu \leq \lambda \leq 1$ and $m \in \mathrm{~N}_{0}=\mathrm{N} \cup\{0\}$.
If f is given by (1.1), then from (1.3) and (1.4) we see that

$$
\begin{equation*}
D_{\lambda \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)=z+\sum_{n=2}^{\infty} \theta_{n}^{m} \sigma_{n} a_{n} z^{n} \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{n}=[1+(\lambda \mu n+\lambda-\mu)(n-1)] \tag{1.6}
\end{equation*}
$$

and

$$
\sigma_{n}=\frac{\left(\alpha_{1}\right)_{n-1}\left(\alpha_{2}\right)_{n-1} \ldots\left(\alpha_{q}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1}\left(\beta_{2}\right)_{n-1} \ldots\left(\beta_{q}\right)_{n-1}} \frac{1}{(n-1)!}
$$

It can be seen that, by specializing the parameters the operator $D_{\lambda \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)$ reduces to many known and new differential operators. In particular, when $\mathrm{m}=0$, the operator $D_{\lambda \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)$ reduces to the well known Dziok-Srivastava operator and for $\mu=0, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1$, it reduces to the operator introduced by F.Al. Oboudi. Further we remark that when $\lambda=1, \mu=0, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1$ the operator $D_{\lambda \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)$ reduces to the operator introduced by G.S. Sălăgean.

For simplicity, in the sequel, we will write $D_{\lambda \mu}^{m} f(z)$ instead of $D_{\lambda \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)$.

Definition 1. Let $m, n \in \mathrm{~N}_{0}$ and $\delta_{i} \in \mathrm{C}, 1 \leq \mathrm{i} \leq \mathrm{n}$, we define the integral operator
$I_{\lambda \mu}\left(f_{1}, \ldots, f_{n}\right)=\mathcal{A}^{n} \rightarrow \mathcal{A}$,
$\left.I_{\lambda \mu}\left(f_{1}, \ldots, f_{n}\right)(z):=([1+(\lambda \mu n+\lambda-\mu)(n-1)]]_{0}^{z}\left(\frac{D_{\lambda \mu}^{m} f_{1}(t)}{t}\right)^{\delta_{1}} \ldots\left(\frac{D_{\lambda \mu}^{m} f_{n}(t)}{t}\right)^{\delta_{n}} d t\right)^{1+(\lambda \mu n+\lambda-\mu)(n-1)}, \quad(z \in \mathrm{U})$
where $f_{i} \in \mathrm{~A}$ and $D_{\lambda \mu}^{m}$ is the generalized differential operator.

Remark 1. (i) For $m=0, n=1, \delta_{1}=1, \delta_{2}=\delta_{3}=\cdots=\delta_{n}=0, \lambda=1, \mu=0, q=2, s=1$, $\alpha_{1}=\beta_{1}$ and $\alpha_{2}=1, D_{0}^{0} f_{1}(z):=D^{0} f(z)=f(z) \in \mathcal{A}$, we have the Alexander integral operator

$$
I(f)(z):=\int_{0}^{z} \frac{f(t)}{t} d t
$$

was introduced [2].
(ii) For $m=0, n=1, \delta_{1}=\delta \in[0,1], \delta_{2}=\delta_{3}=\ldots=\delta_{n}=0, \lambda=1, \mu=0, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1$, and $D_{0}^{0} f_{1}(z)=D^{0} f(z)=f(z) \in S$, we have the integral operator

M. Thirucheran

$$
I_{\delta}(f)(z):=\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\delta} d t
$$

was studied in [3].
(iii) For $m=0, n \in \mathrm{~N}_{0}, \delta_{i} \in \mathrm{C}, \lambda=1, \mu=0, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1, D_{0}^{0} f_{i}(z)=f_{i}(z) \in S, 1 \leq \mathrm{i} \leq \mathrm{n}$, we have the integral operator

$$
I\left(f_{1}, \ldots, f_{n}\right) f(z):=\int_{0}^{z} \prod_{i=1}^{n}\left(\frac{f_{i}(t)}{t}\right)^{\delta_{i}} d t
$$

was studied in [4].
(iv) For $m=0, n=1, \delta_{1}=\gamma, \delta_{2}=\delta_{3}=\ldots=\delta_{n}=0, \lambda=1, \mu=0, \mathrm{q}=2, \mathrm{~s}=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1, D_{0}^{0} f_{1}(z)=D^{0} f(z)=f(z) \in S$, we have the integral operator

$$
I_{\gamma}(f)(z):=\int_{0}^{z}\left[\frac{f(t)}{t}\right]^{\gamma} d t
$$

was studied in [5] and [6].

2. Main Results

The following lemmas will be required in our investigation.
Lemma 2.1 (see [7]) If the function f is regular in the unit disk $\mathrm{U}, f(z)=z+a_{2} z^{2}+\ldots$ and

$$
\left(1-|z|^{2}\right)\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1
$$

for all $z \in \mathrm{U}$, then the function f is univalent in U .

Lemma 2.2 (Schwarz Lemma) (see [8, p. 166]) Let the analytic function $f(z)$ be regular in U and let $f(0)=0$. If, z in $\mathrm{U},|f(z)| \leq 1$, then

$$
|f(z)| \leq|z|, \quad(z \in \mathrm{U})
$$

and $\left|f^{\prime}(0)\right| \leq 1$. The equality holds if and only if $f(z) \equiv k z$ and $|k|=1$.
Theorem 2.3 Let $m, n \in \mathrm{~N}_{0}, \delta_{i} \in \mathrm{C}$ and $f_{i} \in \mathrm{~A} ; 1 \leq i \leq n$. If

$$
\left|\frac{z\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{\prime}}{D_{\lambda \mu}^{m} f_{i}(z)}-1\right| \leq 1
$$

and $\left|\delta_{1}\right|+\cdots+\left|\delta_{n}\right| \leq 1$, then $I_{\lambda \mu}\left(f_{1}, \ldots, f_{n}\right)(z)$ defined in Definition 1 is univalent in U .
Proof. Since $f_{i} \in \mathrm{~A}, 1 \leq i \leq n$, by (1.5), we have

$$
\frac{D_{\lambda \mu}^{m} f_{i}(z)}{z}=1+\sum_{n=2}^{\infty}[1+(\lambda \mu n+\lambda-\mu)(n-1)]^{m} \frac{\left(\alpha_{1}\right)_{n-1} \cdots\left(\alpha_{q}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1} \cdots\left(\beta_{s}\right)_{n-1}} a_{n} \frac{z^{n-1}}{(n-1)!},
$$

Where $m \in \mathrm{~N}_{0}=\mathrm{N} \cup\{0\}$ and

$$
\frac{D_{\lambda \mu}^{m} f_{i}(z)}{z} \neq 0, \text { for all } z \in \mathrm{U} .
$$

On the other hand, we obtain

$$
I_{\lambda \mu}^{\prime}\left(f_{1}, \ldots, f_{m}\right)(z)=\prod_{i=1}^{n}\left(\frac{D_{\lambda \mu}^{m} f_{i}(z)}{z}\right)^{\delta_{i}}
$$

for $z \in \mathrm{U}$. This equality implies that

$$
\ln I^{\prime}{ }_{\lambda \mu}\left(f_{1}, \ldots, f_{n}\right)(z)=\sum_{i=1}^{n} \delta_{i} \ln \frac{D_{\lambda \mu}^{m} f_{i}(z)}{z}
$$

or equivalently

$$
\ln I^{\prime}{ }_{\lambda \mu}\left(f_{1}, \ldots, f_{n}\right)(z)=\sum_{i=1}^{n} \delta_{i}\left[\ln D_{\lambda \mu}^{m} f_{i}(z)-\ln z\right] .
$$

By differentiating above equation, we get

$$
\frac{I_{\lambda \mu}^{\prime \prime}\left(f_{1}, \ldots, f_{n}\right)(z)}{I_{\lambda \mu}^{\prime}\left(f_{1}, \ldots, f_{n}\right)(z)}=\sum_{i=1}^{n} \delta_{i}\left[\frac{\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{\prime}}{D_{\lambda \mu}^{m} f_{i}(z)}-\frac{1}{z}\right]
$$

After some calculation, we obtain

$$
\left.\left|z \frac{I_{\lambda \mu}^{\prime \prime}\left(f_{1}, \ldots, f_{n}\right)(z)}{I_{\lambda \mu}^{\prime}\left(f_{1}, \ldots, f_{n}\right)(z)}\right| \leq \sum_{i=1}^{n}\left|\delta_{i}\right| \frac{z\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{\prime}}{D_{\lambda \mu}^{m} f_{i}(z)}-1 \right\rvert\,
$$

By hypothesis, since $\left|\frac{z\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{\prime}}{D_{\lambda \mu}^{m} f_{i}(z)}-1\right| \leq 1, \quad 1 \leq \mathrm{i} \leq n, \quad z \in \mathrm{U}, \quad 0 \leq \lambda \leq \mu \leq 1$,

$$
m \in \mathrm{~N}_{0}=\mathrm{N} \cup\{0\}
$$

and since $\left|\delta_{1}\right|+\left|\delta_{2}\right|+\cdots+\left|\delta_{n}\right| \leq 1$, we have

$$
\left|z \frac{I_{\lambda \mu}^{\prime \prime}\left(f_{1}, \ldots, f_{n}\right)(z)}{I_{\lambda \mu}^{\prime}\left(f_{1}, \ldots, f_{n}\right)(z)}\right| \leq \sum_{i=1}^{n}\left|\delta_{i}\right| \leq 1 .
$$

Hence, we obtain

$$
\left(1-|z|^{2}\right)\left|z \frac{I_{\lambda \mu}^{\prime \prime}\left(f_{1}, \ldots, f_{n}\right)(z)}{I_{\lambda \mu}^{\prime}\left(f_{1}, \ldots, f_{n}\right)(z)}\right| \leq 1-\left|z^{2}\right| \leq 1
$$

By Lemma 2.1, $I_{\lambda \mu}\left(f_{1}, f_{2}, \ldots, f_{n}\right)(z) \in S$.
Remark 2. For $m=0, D_{\lambda \mu}^{0} f_{i}(z)=D^{0} f_{i}(z)=f_{i}(z) \in S, 1 \leq i \leq n$, we have Theorem 1 in [4].
Corollary 2.4 Let $m, n \in \mathrm{~N}_{0}, \delta_{i}>0$ and $f_{i} \in \mathrm{~A}, 1 \leq i \leq n, \mu=0, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1$. If

$$
\left|\frac{z\left(D_{\lambda}^{m} f_{i}(z)\right)^{\prime}}{D_{\lambda}^{m} f_{i}(z)}-1\right| \leq 1, \quad(z \in \mathrm{U})
$$

and $\sum_{i=1}^{n}\left|\delta_{i}\right| \leq 1$, then $I_{\lambda}\left(f_{1}, f_{2}, \ldots, f_{n}\right)(\mathrm{z}) \in \mathrm{S}$.

Corollary 2.5. Let $m, n \in \mathrm{~N}_{0}, \delta_{i}>0, f_{i} \in \mathrm{~A}, 1 \leq i \leq n, \mu=0, \lambda=1, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1$. If

$$
\left|\frac{z\left(D^{m} f_{i}(z)\right)^{\prime}}{D^{m} f_{i}(z)}-1\right| \leq 1, \quad(z \in \mathrm{U})
$$

and $\sum_{i=1}^{n}\left|\delta_{i}\right| \leq 1$, then $I\left(f_{1}, f_{2}, \ldots, f_{n}\right)(z) \in S$.

M. Thirucheran

Theorem 2.6. Let $m, n \in \mathrm{~N}_{0}, \delta_{i} \in \mathrm{C}$ and $f_{i} \in \mathrm{~A}, 1 \leq i \leq n$ if
(i) $\left|D_{\lambda \mu}^{m}\left(f_{i}(z)\right)\right| \leq 1$
(ii) $\left|\frac{z^{2}\left(D_{\lambda \mu}^{m}\left(f_{i}(z)\right)^{\prime}\right.}{\left(D_{\lambda \mu}^{m}\left(f_{i}(z)\right)^{2}\right.}-1\right| \leq 1, \quad(z \in \mathrm{U})$ and
(iii) $\sum_{i=1}^{n}\left|\delta_{i}\right| \leq \frac{1}{3}$
then $I_{\lambda \mu}\left(f_{1}, f_{2}, \ldots, f_{n}\right)(z)$ defined in Definition 1 is univalent in U .

Proof. By the Lemma 2.1, we get

$$
\left(1-|z|^{2}\right)\left|z \frac{I_{\lambda \mu}^{\prime \prime}\left(f_{1}, \ldots, f_{n}\right)(z)}{I_{\lambda \mu}^{\prime}\left(f_{1}, \ldots, f_{n}\right)(z)}\right| \leq\left(1-\left|z^{2}\right|\right) \sum_{i=1}^{n}\left|\delta_{i}\right|\left|\frac{z\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{\prime}}{D_{\lambda \mu}^{m} f_{i}(z)}-1\right|
$$

This inequality implies that

$$
\begin{aligned}
& \left(1-|z|^{2}\right)\left|z \frac{I_{\lambda \mu}^{\prime \prime}\left(f_{1}, \ldots, f_{n}\right)(z)}{I_{\lambda \mu}^{\prime}\left(f_{1}, \ldots, f_{n}\right)(z)}\right| \leq\left(1-\left|z^{2}\right|\right) \sum_{i=1}^{n}\left[\left|\delta_{i}\right| \frac{z\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{\prime}}{D_{\lambda \mu}^{m} f_{i}(z)}\left|+\left|\delta_{i}\right|\right]\right. \\
& =\left(1-\left|z^{2}\right|\right) \sum_{i=1}^{n}\left[\left|\delta_{i}\right|\left|\frac{z^{2}\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{2}}\right| \frac{D_{\lambda \mu}^{m} f_{i}(z)}{|z|}\left|+\left|\delta_{i}\right|\right]\right.
\end{aligned}
$$

By Schwarz Lemma, we have

$$
\left(1-|z|^{2}\right)\left|z \frac{I_{\lambda \mu}^{\prime \prime}\left(f_{1}, \ldots, f_{n}\right)(z)}{I_{\lambda \mu}^{\prime}\left(f_{1}, \ldots, f_{n}\right)(z)}\right| \leq\left(1-\left|z^{2}\right|\right) \sum_{i=1}^{n}\left[\left|\delta_{i}\right|\left|\frac{z^{2}\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{2}}\right|+\left|\delta_{i}\right|\right]
$$

or

$$
\begin{aligned}
\left(1-|z|^{2}\right)\left|z \frac{I_{\lambda \mu}^{\prime \prime}\left(f_{1}, \ldots, f_{n}\right)(z)}{I_{\lambda \mu}^{\prime}\left(f_{1}, \ldots, f_{n}\right)(z)}\right| & \leq\left(1-\left|z^{2}\right|\right) \sum_{i=1}^{n}\left[\left|\delta_{i}\right| \frac{\mid z^{2}\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{2}}-1+1\left|+\left|\delta_{i}\right|\right]\right. \\
& \leq\left(1-\left|z^{2}\right|\right) \sum_{i=1}^{n}\left|\delta_{i}\right|\left|\frac{z^{2}\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{\prime}}{\left(D_{\lambda \mu}^{m} f_{i}(z)\right)^{2}}-1\right|+2\left|\delta_{i}\right| \\
& \leq\left(1-\left|z^{2}\right|\right) \sum_{i=1}^{n}\left[\left|\delta_{i}\right|+2\left|\delta_{i}\right|\right] \\
& \leq 3\left(1-\left|z^{2}\right|\right) \sum_{i=1}^{n}\left|\delta_{i}\right| \\
& \leq\left(1-\left|z^{2}\right|\right) \leq 1, \quad \text { for all } z \in \mathrm{U} .
\end{aligned}
$$

So, by Lemma 2.1, $I_{\lambda \mu}\left(f_{1}, f_{2}, \ldots, f_{n}\right)(z) \in \mathrm{S}$.

Remark 3. For $m=0, n=1, \delta_{1}=\delta \in \mathrm{C},|\delta| \leq 1 / 3, \delta_{2}=\delta_{3}=\cdots=\delta_{n}=0, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1$, we have Theorem 1 in [6].

Corollary 2.7. Let $m, n \in \mathrm{~N}_{0}, \delta_{i}>0$ and $f_{i} \in \mathrm{~A}, 1 \leq i \leq n$. If

Sufficient Conditions for Univalence...

(i) $\left|D_{\lambda \mu}^{m}\left(f_{i}(z)\right)\right| \leq 1$
(ii) $\left|\frac{z^{2}\left(D_{\lambda \mu}^{m}\left(f_{i}(z)\right)^{\prime}\right.}{\left(D_{\lambda \mu}^{m}\left(f_{i}(z)\right)^{2}\right.}-1\right| \leq 1, \quad(z \in \mathrm{U})$ and
(iii) $\delta_{1}+\delta_{2}+\cdots+\delta_{n} \leq 1 / 3$
then $I_{\lambda \mu}\left(f_{1}, f_{2}, \ldots, f_{n}\right)(z) \in \mathbf{S}$.
In [9] similar results were given by using the Ruscheweyh differential operator .

References

[1] C. Selvaraj, Subordination results for certain classes of analytic functions defined by a generalized differential operator, XXIII, International Conference on Operator Theory, Romania, 2010.
[2] I.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. 17 (1915), 12-22.
[3] S.S. Miller, P.T. Mocanu and M.O. Reade, Starlike integral operators, Pacific J. Math. 79 (1978), No. 1, 157-168.
[4] D. Breaz and N. Breaz, Two integral operators, Studia Univ. Babes-Bolyai Math. 47 (2002), No. 3, 13-19.
[5] V. Pescar, On some integral operations which preserve the univalence, Punjab Univ. J. Math. (Lohore), 30 (1997), 1-10.
[6] V. Pescar and S. Owa, Sufficient conditions for univalence of certain integral operators, Indian J. Math., 42 (2000), No. 3, 347-351.
[7] J. Becker, Löwnersche, Differential Gleichung und quasikonform fortsetzbare Schichte Functionen, J. Reine Angew. Math. 255 (1972), 23-43.
[8] Z. Nehari, Conformal Mapping, McGraw-Hill Book Comp, New York, 195 (Dover. Publ. Inc., 1975).
[9] G.I. Oros, G. Oros and D. Breaz, Sufficiency conditions for univalence of an integral operator, J. Inequal. Appl. 2008, Art. ID 127645, 7pp.

