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1. Introduction 

 

 Let A denote the class of functions f(z) of the form 

(1.1)              ,)(
2

∑
∞

=

+=
n

n

n zazzf  

which are analytic in the open unit disk U : {z ∈ C : |z| < 1}, and S := {f ∈  A : f is univalent in U}. 

For functions f given by (1.1) and g given by ,)(
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convolution) of  f and g is defined by 
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Let α1, α2, …, αq and β1, β2, …, βs (q, s ∈ N ∪ {0}, q ≤ s + 1) be complex numbers such that βk ≠ 0, −1, −2, … 

for k ∈ {1, 2, …, s}.  The generalized hypergeometric function Fq s  is given by 
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where (x)n denotes the Pochhammer symbol defined by 

(x)n = x (x+1) … (x+n−1) for n ∈ N and (x)0 = 1. 

Corresponding to a function );,( 11, zsq βαG  defined by 
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For f ∈ A, C. Selvaraj [1] introduced the following generalized differential operator: 
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(1.3) 
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and 
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where 0 ≤ µ ≤ λ ≤ 1 and m ∈ N0 = N ∪ {0}. 

 

If f is given by (1.1), then from (1.3) and (1.4) we see that 
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where 
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It can be seen that, by specializing the parameters the operator )(),( 11 zfDm βαµλ  reduces to many 

known and new differential operators.  In particular, when m = 0, the operator )(),( 11 zfDm βαµλ  reduces to 

the well known Dziok-Srivastava operator and for  

µ = 0, q = 2, s = 1, α1 = β1 and α2 = 1, it reduces to the operator introduced by F.Al. Oboudi.  Further we remark 

that when λ = 1, µ = 0, q = 2, s = 1, α1 = β1 and α2 = 1 the operator )(),( 11 zfDm βαµλ  reduces to the operator 

introduced by G.S. Sălăgean. 

 

For simplicity, in the sequel, we will write )(zfDm

µλ  instead of  ).(),( 11 zfDm βαµλ  

 

Definition 1. Let m, n ∈ N0 and δi ∈ C, 1 ≤ i ≤ n, we define the integral operator 
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where fi ∈ A and 
mD µλ  is the generalized differential operator. 

 

Remark 1. (i) For m = 0, n = 1, δ1 = 1, δ2 = δ3 = ⋅⋅⋅ = δn = 0, λ = 1, µ = 0, q = 2, s = 1,  

α1 = β1 and α2 = 1, ,)()(:)( 0
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was introduced [2]. 

(ii) For m = 0, n = 1, δ1 = δ ∈ [0, 1], δ2 = δ3 = ⋅⋅⋅ = δn = 0, λ = 1, µ = 0, q = 2, s = 1, α1 = β1 and α2 = 1, and 
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was studied in [3]. 

(iii) For m = 0, n ∈ N0, δi ∈ C, λ = 1, µ = 0, q = 2, s = 1, α1 = β1 and α2 = 1, ,)()(0
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was studied in [4]. 

(iv) For m = 0, n = 1, δ1 = γ, δ2 = δ3 = ⋅⋅⋅ = δn = 0, λ = 1, µ = 0, q = 2, s = 1, α1 = β1 and  

α2 = 1, ,)()()( 0
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was studied in [5] and [6]. 

 

2. Main Results 

 

 The following lemmas will be required in our investigation. 

Lemma 2.1 (see [7]) If the function f is regular in the unit disk U, f(z) = z + 2a z
2
 + ⋅⋅⋅ and 
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for all z ∈ U, then the function f is univalent in U. 

 

Lemma 2.2 (Schwarz Lemma) (see [8, p. 166]) Let the analytic function f (z) be regular in U and let f (0) = 0.  

If, z in U, |f (z)| ≤ 1, then 

| f (z) | ≤ |z|,      (z ∈ U) 

and | f ′(0) | ≤ 1.  The equality holds if and only if f (z) ≡ kz and | k | = 1. 

 

Theorem 2.3 Let m, n ∈ N0, δi ∈ C and fi ∈ A; 1 ≤ i ≤ n.  If 
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and  ,11 ≤++ nδδ L then Iλµ(f1, …, fn)(z) defined in Definition 1 is univalent in U. 

Proof. Since f i ∈ A, 1 ≤ i ≤ n, by (1.5), we have 
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Where   m ∈ N0 = N ∪ {0}   and   
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 for all z ∈ U. 

 

On the other hand, we obtain 
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for z ∈ U.  This equality implies that 
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By differentiating above equation, we get 
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After some calculation, we obtain 
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By hypothesis, since ,11
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By Lemma 2.1, .))(,...,,( 21 SzfffI n ∈µλ  

Remark 2. For m = 0, ,)()()( 00 SzfzfDzfD iii ∈==µλ  1 ≤ i ≤ n, we have Theorem 1 in [4]. 

Corollary 2.4 Let m, n ∈ N0, δi > 0 and fi ∈ A, 1 ≤ i ≤ n, µ = 0, q = 2, s = 1, α1 = β1 and  

α2 = 1.  If 
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Corollary 2.5. Let m, n ∈ N0, δi > 0, fi ∈ A, 1 ≤ i ≤ n, µ = 0,λ=1, q = 2, s = 1, α1 = β1 and α2 = 1.  If 
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Theorem 2.6. Let m, n ∈ N0, δi ∈ C and fi ∈ A, 1 ≤ i ≤ n if 
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then Iλµ(f1, f2, …, fn)(z) defined in Definition 1 is univalent in U. 

 

Proof. By the Lemma 2.1, we get 
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By Schwarz Lemma, we have 
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So, by Lemma 2.1, Iλµ(f1, f2, …, fn)(z) ∈ S. 

 

Remark 3. For m = 0, n = 1, δ1 = δ ∈ C, |δ| ≤ 1/3, δ2 = δ3 = ⋅⋅⋅ = δn = 0, q = 2, s = 1, α1 = β1 and α2 = 1, we have 

Theorem 1 in [6]. 

 

Corollary 2.7. Let m, n ∈ N0, δi > 0 and fi ∈ A, 1 ≤ i ≤ n.  If 
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(iii) δ1 + δ2 + ⋅⋅⋅ + δn ≤ 1/3 

then Iλµ(f1, f2, …, fn)(z) ∈ S. 

 

In [9] similar results were given by using the Ruscheweyh differential operator . 
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