American. Jr. of Mathematics and Sciences Vol. 1, No.1 ,(January 2012) Copyright © Mind Reader Publications <u>www.journalshub.com</u>

On the Diophantine equation $4^x + p^y = z^2$

where p is a prime number

Somchit Chotchaisthit

Department of Mathematics, Faculty of Science Khon Kaen University, Khon Kaen 40002 Thailand E-mail: <u>somchit@kku.ac.th</u>

Abstract

In this paper we show that all non-negative integer solutions of $4^{x} + p^{y} = z^{2}$, where *p* is a prime number, are of the following $(x, p, y, z) \in \{(2, 3, 2, 5)\} \cup \{(r, 2^{r+1} + 1, 1, 2^{r} + 1) : r \in \mathbb{N} \cup \{0\}\} \cup \{(r, 2, 2r + 3, 3, 2^{r}): r \in \mathbb{N} \cup \{0\}\}.$

2010 Mathematics Subject classification. 11D61

Key words and phrases. Exponential Diophantine equation.

1. Introduction

D. Acu (2007) studied the Diophantine equation $2^x + 5^y = z^2$. He found that this equation has exactly two solutions in non-negative integer $(x, y, z) \in \{(3,0,3), (2,1,3)\}$. In 2010 the authors [5] studied the Diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$. They found that these equations have no non-negative integer solution. In 2011 A. Suvarnamani [6] studied solution of the Diophantine equation $2^x + p^y = z^2$ where p is a prime number. Unfortunately there is a misleading argument in [6] (see page 1417 line 15). This, for example, excludes the solutions (x, y, z) = (3, 1, 5) and (x, y, z) = (9, 1, 23) of the equation $2^x + 17^y = z^2$. Inspired by [5] and [6], we study the Diophantine equation $4^x + p^y = z^2$ where p is a prime number and x, y and z are non-negative integers.

2. Main Results

In this study, we use Catalan's conjecture (see [4]) stating that the only solution in integers a > 1, b > 1, x > 1, y > 1 of the equation $a^x - b^y = 1$ is a = y = 3 and b = x = 2.

First we consider the Diophantine equation $4^x + p^y = z^2$ where p is an odd prime number.

Theorem 1. The Diophantine equation $4^x + p^y = z^2$, where p is an odd prime, has only non-negative integer solutions in the form (x, p, y, z) = (2,3,2,5) or $(x, p, y, z) = (r, 2^{r+1} + 1, 1, 2^r + 1)$ where r is a non-negative integer.

Proof. Case 1: y = 0. We have $4^x + 1 = z^2$. It easy to check that if $4^x + 1 = z^2$ has a solution, then $x \ge 2$ and z is an odd integer greater than 2. Let z = 2k + 1, for some integer $k \ge 1$. Thus $4^x + 1 = (2k + 1)^2 = 4k^2 + 4k + 1$.

It follows that $4^{x-1} = k^2 + k = k(k+1)$. We know that k(k+1) has an odd factor greater than 1 and 4^{x-1} is not an odd factor. This is a contradiction. In this case the equation $4^x + p^y = z^2$ does not have a solution. Case 2: y > 0. We have

$$p^{y} = z^{2} - 4^{x} = (z + 2^{x})(z - 2^{x}).$$

Then there are non-negative integers α , β such that $p^{\alpha} = z + 2^{x}$, $p^{\beta} = z - 2^{x}$, $\alpha > \beta$ and $\alpha + \beta = y$. Therefore,

$$p^{\beta}(p^{\alpha-\beta}-1) = p^{\alpha}-p^{\beta} = (z+2^{x})-(z-2^{x}) = 2^{x+1}.$$

Since p is an odd prime, $\beta = 0$. This implies that $z = 2^x + 1$, $y = \alpha > 0$ and $p^{\alpha} - 2^{x+1} = 1$.

If $\alpha = 1$, then $p = 2^{x+1} + 1$. Thus $(x, p, y, z) = (x, 2^{x+1} + 1, 1, 2^x + 1)$ is a solution of $4^x + p^y = z^2$ whenever $2^{x+1} + 1$ is prime*.

If $\alpha > 1$, then x > 0. By Catalan's conjecture, we have $p = 3, \alpha = 2$ and x = 2. It follows that z = 5. In this case, (x, p, y, z) = (2,3,2,5) is the only one solution.

It easy to check that (x, p, y, z) = (2,3,2,5) or $(x, p, y, z) = (r, 2^{r+1} + 1, 1, 2^r + 1)$, where r is a non-negative integer, are solutions of $4^x + p^y = z^2$. This finishes the proof.

Finally, we consider the case p = 2, that is, the Diophantine equation $4^x + 2^y = z^2$. The following theorem is in [6], and it is rearranged for the reader's convenience.

Theorem 2. Every non-negative integer solution of the Diophantine equation $2^x + 2^y = z^2$ where $x \le y$ is of the form $(x, y, z) = (2r - 1, 2r - 1, 2^r)$ or $(x, y, z) = (2r, 2r + 3, 3.2^r)$ where r is a non-negative integer.

Proof. Let $z = a \cdot 2^r$ for some odd positive integer a and some non-negative integer r. Thus we have

$$2^{x}(1+2^{y-x}) = z^{2} = a^{2} \cdot 2^{2r}.$$

If x = y, then a = 1 and $2^{x+1} = 2^{2r}$. This implies that 2r = x + 1 or x = 2r - 1. Thus if x = y, every non-negative integer solution is of the form $(x, y, z) = (2r - 1, 2r - 1, 2^r)$ where r is a non-negative integer.

Next we consider the case x < y. Thus 2r = x and $a^2 - 2^{y-x} = 1$.

If y - x = 1, then $a^2 = 3$ which contradicts to the fact that *a* is an integer. Thus y - x > 1. By Catalan's conjecture, we have a = 3, y - x = 3. It follows that y = 2r + 3 and $z = 3.2^r$. Thus if x < y, every non-negative integer solution of the Diophantine $2^x + 2^y = z^2$ is of the form $(x, y, z) = (2r, 2r + 3, 3.2^r)$ where *r* is a non-negative integer.

*We known that any prime number of the form $2^{x} + 1$ is called a Fermat prime. Until now 3, 5, 17, 257 and 65537 are only known Fermat primes. It remains unknown if there exist infinity many such prime numbers.

It is clear that $(x, y, z) = (2r - 1, 2r - 1, 2^r)$ or $(x, y, z) = (2r, 2r + 3, 3.2^r)$, where r is non-negative integer, are solutions of the equation. The theorem is proved.

The Diophantine equation $4^x + 2^y = z^2$ is a special case of the Diophantine equation $2^x + 2^y = z^2$. It easy to verify the following corollary.

Corollary 3. The non-negative solutions of the Diophantine equation $4^x + 2^y = z^2$ are of the form $(x, y, z) = (r, 2r + 3, 3.2^r)$, where r is a non-negative integer.

In conclude, the Diophantine equation $4^x + p^y = z^2$, where p is a prime number, is completely solved.

Acknowledgements

This work was supported by Faculty of Science, Khon Kaen University, Thailand.

On the Diophantine equation $4^{x} + p^{y} = z^{2}$ where p is a prime number

References

- [1] D. Acu, On a Diophantine equation $2^x + 5^y = z^2$, *General Mathematics*, Vol. 15, No. 4 (2007), 145-148.
- [2] M.B. David, *Elementary Number Theory*, 6th ed., McGraw-Hill, Singapore, 2007.
- [3] H.R. Kenneth, *Elementary Number Theory and its Application*, 4th ed., Addison Wesley Longman, Inc., 2000.

[4] P. Mih^{*}ailescu, Primary cyclotomic units and a proof of Catalan's conjecture. *J. Reine Angew. Math.* 572, 167–195 (2004).

[5] A. Suvarnamani, A. Singta, S. Chotchaisthit, On two Diophantine equations $4^{x} + 7^{y} = z^{2}$ and $4^{x} + 11^{y} = z^{2}$, *Science and Technology RMUTT* Journal Vol. 1 No. 1 (2011), 25 – 28.

[6] A. Suvarnamani, Solutions of the Diophantine equations $2^x + p^y = z^2$, Int. J. of Mathematical Sciences and Applications, Vol. 1 No. 3 September (2011), 1415–1419.