On the Diophantine equation $4^{x}+p^{y}=z^{2}$
 where p is a prime number

Somchit Chotchaisthit
Department of Mathematics, Faculty of Science
Khon Kaen University, Khon Kaen 40002 Thailand
E-mail: somchit@kku.ac.th

Abstract

In this paper we show that all non-negative integer solutions of $4^{x}+p^{y}=z^{2}$, where p is a prime number, are of the following $(x, p, y, z) \in\{(2,3,2,5)\} \cup\left\{\left(r, 2^{r+1}+1,1,2^{r}+1\right): r \in \mathbb{N} \cup\{0\}\right\} \cup\{(r, 2,2 r+$ 3, 3. 2^{r}): $\left.r \in \mathbb{N} \cup\{0\}\right\}$.

2010 Mathematics Subject classification. 11D61

Key words and phrases. Exponential Diophantine equation.

1. Introduction

D. Acu (2007) studied the Diophantine equation $2^{x}+5^{y}=z^{2}$. He found that this equation has exactly two solutions in non-negative integer $(x, y, z) \in\{(3,0,3),(2,1,3)\}$. In 2010 the authors [5] studied the Diophantine equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$. They found that these equations have no non-negative integer solution. In 2011 A. Suvarnamani [6] studied solution of the Diophantine equation $2^{x}+p^{y}=z^{2}$ where p is a prime number. Unfortunately there is a misleading argument in [6] (see page 1417 line 15). This, for example, excludes the solutions $(x, y, z)=(3,1,5)$ and $(x, y, z)=(9,1,23)$ of the equation $2^{x}+17^{y}=z^{2}$. Inspired by [5] and [6], we study the Diophantine equation $4^{x}+p^{y}=z^{2}$ where p is a prime number and x, y and z are non-negative integers.

2. Main Results

In this study, we use Catalan's conjecture (see [4]) stating that the only solution in integers $a>1, b>1, x>$ $1, y>1$ of the equation $a^{x}-b^{y}=1$ is $a=y=3$ and $b=x=2$.

First we consider the Diophantine equation $4^{x}+p^{y}=z^{2}$ where p is an odd prime number.
Theorem 1. The Diophantine equation $4^{x}+p^{y}=z^{2}$, where p is an odd prime, has only non-negative integer solutions in the form $(x, p, y, z)=(2,3,2,5)$ or $(x, p, y, z)=\left(r, 2^{r+1}+1,1,2^{r}+1\right)$ where r is a non-negative integer.

Proof. Case 1: $y=0$. We have $4^{x}+1=z^{2}$. It easy to check that if $4^{x}+1=z^{2}$ has a solution, then $x \geq 2$ and z is an odd integer greater than 2 . Let $z=2 k+1$, for some integer $k \geq 1$. Thus

$$
4^{x}+1=(2 k+1)^{2}=4 k^{2}+4 k+1
$$

It follows that $4^{x-1}=k^{2}+k=k(k+1)$. We know that $k(k+1)$ has an odd factor greater than 1 and 4^{x-1} is not an odd factor. This is a contradiction. In this case the equation $4^{x}+p^{y}=z^{2}$ does not have a solution. Case 2: $y>0$. We have

$$
p^{y}=z^{2}-4^{x}=\left(z+2^{x}\right)\left(z-2^{x}\right)
$$

Then there are non-negative integers α, β such that $p^{\alpha}=z+2^{x}, p^{\beta}=z-2^{x}$, $\alpha>\beta$ and $\alpha+\beta=y$. Therefore,

$$
p^{\beta}\left(p^{\alpha-\beta}-1\right)=p^{\alpha}-p^{\beta}=\left(z+2^{x}\right)-\left(z-2^{x}\right)=2^{x+1}
$$

Since p is an odd prime, $\beta=0$. This implies that $z=2^{x}+1, y=\alpha>0$ and $p^{\alpha}-2^{x+1}=1$.

If $\alpha=1$, then $p=2^{x+1}+1$. Thus $(x, p, y, z)=\left(x, 2^{x+1}+1,1,2^{x}+1\right)$ is a solution of $4^{x}+p^{y}=z^{2}$ whenever $2^{x+1}+1$ is prime*.

If $\alpha>1$, then $x>0$. By Catalan's conjecture, we have $p=3, \alpha=2$ and $x=2$. It follows that $z=5$. In this case, $(x, p, y, z)=(2,3,2,5)$ is the only one solution.

It easy to check that $(x, p, y, z)=(2,3,2,5)$ or $(x, p, y, z)=\left(r, 2^{r+1}+1,1,2^{r}+1\right)$, where r is a non-negative integer, are solutions of $4^{x}+p^{y}=z^{2}$. This finishes the proof.

Finally, we consider the case $p=2$, that is, the Diophantine equation $4^{x}+2^{y}=z^{2}$. The following theorem is in [6], and it is rearranged for the reader's convenience.

Theorem 2. Every non-negative integer solution of the Diophantine equation $2^{x}+2^{y}=z^{2}$ where $x \leq y$ is of the form $(x, y, z)=\left(2 r-1,2 r-1,2^{r}\right)$ or $(x, y, z)=\left(2 r, 2 r+3,3.2^{r}\right)$ where r is a non-negative integer.

Proof. Let $z=a .2^{r}$ for some odd positive integer a and some non-negative integer r. Thus we have

$$
2^{x}\left(1+2^{y-x}\right)=z^{2}=a^{2} \cdot 2^{2 r}
$$

If $x=y$, then $a=1$ and $2^{x+1}=2^{2 r}$. This implies that $2 r=x+1$ or $x=2 r-1$. Thus if $x=y$, every nonnegative integer solution is of the form $(x, y, z)=\left(2 r-1,2 r-1,2^{r}\right)$ where r is a non-negative integer.

Next we consider the case $x<y$. Thus $2 r=x$ and $a^{2}-2^{y-x}=1$.
If $y-x=1$, then $a^{2}=3$ which contradicts to the fact that a is an integer. Thus $y-x>1$. By Catalan's conjecture, we have $a=3, y-x=3$. It follows that $y=2 r+3$ and $z=3.2^{r}$. Thus if $x<y$, every nonnegative integer solution of the Diophantine $2^{x}+2^{y}=z^{2}$ is of the form $(x, y, z)=\left(2 r, 2 r+3,3.2^{r}\right)$ where r is a non-negative integer.
*We known that any prime number of the form $2^{x}+1$ is called a Fermat prime. Until now 3, 5, 17, 257 and 65537 are only known Fermat primes. It remains unknown if there exist infinity many such prime numbers.

It is clear that $(x, y, z)=\left(2 r-1,2 r-1,2^{r}\right)$ or $(x, y, z)=\left(2 r, 2 r+3,3.2^{r}\right)$, where r is non-negative integer, are solutions of the equation. The theorem is proved.

The Diophantine equation $4^{x}+2^{y}=z^{2}$ is a special case of the Diophantine equation $2^{x}+2^{y}=z^{2}$. It easy to verify the following corollary.

Corollary 3. The non-negative solutions of the Diophantine equation $4^{x}+2^{y}=z^{2}$ are of the form $(x, y, z)=$ $\left(r, 2 r+3,3.2^{r}\right)$, where r is a non-negative integer.

In conclude, the Diophantine equation $4^{x}+p^{y}=z^{2}$, where p is a prime number, is completely solved.

Acknowledgements

This work was supported by Faculty of Science, Khon Kaen University, Thailand.

On the Diophantine equation $4^{x}+p^{y}=z^{2}$ where p is a prime number

References

[1] D. Acu, On a Diophantine equation $2^{x}+5^{y}=z^{2}$, General Mathematics, Vol. 15, No. 4 (2007), 145-148.
[2] M.B. David, Elementary Number Theory, $6^{\text {th }}$ ed., McGraw-Hill, Singapore, 2007.
[3] H.R. Kenneth, Elementary Number Theory and its Application, $4^{\text {th }}$ ed., Addison Wesley Longman, Inc., 2000.
[4] P. Mih ailescu, Primary cyclotomic units and a proof of Catalan's conjecture. J. Reine Angew. Math. 572, 167-195 (2004).
[5] A. Suvarnamani, A. Singta, S. Chotchaisthit, On two Diophantine equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$, Science and Technology RMUTT Journal Vol. 1 No. 1 (2011), $25-28$.
[6] A. Suvarnamani, Solutions of the Diophantine equations $2^{x}+p^{y}=z^{2}$, Int. J. of Mathematical Sciences and Applications, Vol. 1 No. 3 September (2011), 1415-1419.

