American. Jr. of Mathematics and Sciences
 Vol. 1, No. 1 ,(January 2012)
 Copyright Mind Reader Publications
 www.journalshub.com

ON THE DIOPHANTINE EQUATIONS OF $\left(2^{n}\right)^{x}+p^{y}=z^{2} \quad$ TYPE

BILGE PEKER AND SELIN (INAG) CENBERCI

Abstract

In this paper, we study on solutions of the Diophantine equations of $\left(2^{n}\right)^{x}+p^{y}=z^{2}$ type, when k, x, y, z, n are non-negative integers.

1. Introduction

There are lots of studies about the Diophantine equation of type $a^{x}+b^{y}=c^{z}$. In 1999, Z. Cao [3] proved that this equation has at most one solution with $z>1$. In 2005 , D. Acu [1] showed that the Diophantine equation $2^{x}+5^{y}=z^{2}$ has exactly two solutions in non-negative integers, i.e. $(x, y, z) \in\{(3,0,3),(2,1,3)\}$. J. Sandor [6] studied on the diophantine equation $4^{x}+18^{y}=22^{z}$. In 2011, A. Suvarnamani [9] consider the Diophantine equation $2^{x}+p^{y}=z^{2}$ where p is a prime and x, y, z are non-negative integers. A. Suvarnamani , A. Singta and S. Chotchaisthit [10] found solutions of the Diophantine equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$. In 1657 Frenicle de Bessy [5] solved a problem possed by Fermat: if p is an odd prime and $n \geq 2$ is an integer, then the equation $x^{2}-1=p^{n}$ has no integer solution.

In this study, we gave solutions of the Diophantine equations $2^{x}+19^{y}=z^{2}$, $8^{x}+19^{y}=z^{2}$ and $8^{x}+17^{y}=z^{2}$ when x, y, z are non-negative integers.

2. Preliminaries

In our study, we use Catalan's Conjecture ([4]). Now we give this conjecture.
Conjecture 1. (Catalan) The only solution in integers $a>1, b>1, x>1$ and $y>1$ of the equation $a^{x}-b^{y}=1$ is $a=y=3$ and $b=x=2$.

Now we give our theorems.
Theorem 1. When k is a non-negative integer, solution of the Diophantine equation

$$
\begin{equation*}
2^{x}+19^{y}=z^{2} \tag{1}
\end{equation*}
$$

is given $(x, y, z)=(3,0,3)$.
Proof. If we write $x=0$, then the Diophantine equation (1) becomes

$$
1+19^{y}=z^{2}
$$

and then, we have

$$
z^{2}-1=19^{y}
$$

i.e.

$$
(z-1)(z+1)=19^{y}
$$

[^0]where $z-1=19^{u}, z+1=19^{y-u}, y>2 u$. Then we obtain $19^{y-u}-19^{u}=2$ or $19^{u}\left(19^{y-2 u}-1\right)=2$. If $u=0$, then $19^{y}-1=2$, i.e. $19^{y}=3$; which is impossible .

If we write $x=2 k$, then the Diophantine equation (1) becomes

$$
2^{2 k}+19^{y}=z^{2}
$$

and then, we get

$$
z^{2}-2^{2 k}=19^{y}
$$

i.e.

$$
\left(z-2^{k}\right)\left(z+2^{k}\right)=19^{y}
$$

where $z-2^{k}=11^{v}$ and $z+2^{k}=19^{y-v}, y>2 v$ and v is a non-negative integer. Then we get $19^{y-v}-19^{v}=2^{k+1}$ or $19^{v}\left(19^{y-2 v}-1\right)=2^{k+1}$.

If $v=0$, we obtain $19^{y}-1=2^{k+1}$ or $19^{y}-2^{k+1}=1$. From Catalan's Conjecture, it is obvious that we don't have a solution.

For $y=1$, we obtain $19-2^{k+1}=1$, i.e. $10=2^{k+1}$ which is impossible.
For $y=0$, we get $z^{2}-2^{2 k}=1$, i.e. $z^{2}-2^{2 k}=1$ which has no solution when $z=0$ or $z=1$. From Catalan's Conjecture, $z=3$ and $2 k=3$ which is impossible, too.

If we write $x=2 k+1$, then the equation (1) becomes

$$
2^{2 k+1}+19^{y}=z^{2}
$$

and then, we get

$$
z^{2}-2^{2 k+1}=19^{y}
$$

i.e.

$$
\left(z-2^{k+\frac{1}{2}}\right)\left(z+2^{k+\frac{1}{2}}\right)=19^{y}
$$

where $z-2^{k+\frac{1}{2}}=19^{u}$ and $z+2^{k+\frac{1}{2}}=19^{y-u}, y>2 u$ and u is a non-negative integer. Then we obtain $19^{y-u}-19^{u}=2^{k+\frac{3}{2}}$ or $19^{u}\left(19^{y-2 u}-1\right)=2^{k+\frac{3}{2}}$. Clearly it is impossible if $u>0$.

If $u=0$, then we obtain $19^{y}-1=2^{k+\frac{3}{2}}$ or $19^{y}-2^{k+\frac{3}{2}}=1$. From Catalan's Conjecture, it is obvious that we don't find a solution.

If $y=1$, then we get $19-2^{k+\frac{3}{2}}=1$, which is impossible, too.
If $y=0$, then we get $z^{2}-2^{2 k+1}=1$ which has no solution when $z=0$ or $z=1$. By using Catalan's Conjecture, there is only solution for $z=3$ and $2 k+1=3$, i.e. $k=1$. So $(x, y, z)=(3,0,3)$.

Theorem 2. When k is a non-negative integer, the Diophantine equation

$$
\begin{equation*}
8^{x}+19^{y}=z^{2} \tag{2}
\end{equation*}
$$

has no solution.

Proof. If $x=2 k$, then the equation (2) becomes

$$
8^{2 k}+19^{y}=z^{2}
$$

and then, we have

$$
z^{2}-8^{2 k}=19^{y}
$$

that is

$$
\left(z-8^{k}\right)\left(z+8^{k}\right)=19^{y}
$$

where $z-8^{k}=19^{v}$ and $z+8^{k}=19^{y-v}, y>2 v$ and v is a non-negative integer. Then we get $19^{v}\left(19^{y-2 v}-1\right)=2^{3 k+1}$.

If $v=0$, then we obtain $19^{y}-1=2^{3 k+1}$ or $19^{y}-2^{3 k+1}=1$. From the Catalan's Conjecture, it is obvious that, $y=2$ and $3 k+1=3$ which is impossible.

For $y=1$, we obtain $19=1+2^{3 k+1}$. This does not give us a solution.
For $y=0$, we get $z^{2}-8^{2 k}=1$, i.e. $z^{2}-2^{6 k}=1$ which is no solution when $z=0$ or $z=1$. From the Catalan's Conjecture, $z=3$ and $6 k=3$, which is impossible.

If we write $x=2 k+1$, then the Diophantine equation (2) becomes

$$
\begin{gathered}
8^{2 k+1}+19^{y}=z^{2} \\
z^{2}-8^{2 k+1}=19^{y} \\
\left(z-8^{k+\frac{1}{2}}\right)\left(z+8^{k+\frac{1}{2}}\right)=19^{y}
\end{gathered}
$$

where $z-8^{k+\frac{1}{2}}=19^{u}$ and $z+8^{k+\frac{1}{2}}=19^{y-u}, y>2 u$ and u is non-negative integer. Then we get $19^{y-u}-19^{u}=8^{k+\frac{3}{2}}$ or $19^{u}\left(19^{y-2 u}-1\right)=8^{k+\frac{3}{2}}$.

If $u=0$, then we obtain $19^{y}-1=8^{k+\frac{3}{2}}$ or $19^{y}-2^{3\left(k+\frac{3}{2}\right)}=1$. From Theorem 1, it is obvious that $y=2$ and $3\left(k+\frac{3}{2}\right)=3$ which is impossible.

If $y=1$, then we get $19-8^{k+\frac{3}{2}}=1$ i.e. $19=1+8^{k+\frac{3}{2}}$ which is impossible, too.
If $y=0$, then we get $z^{2}-8^{k+\frac{3}{2}}=1$ which has no solution when $z=0$ or $z=1$. $z^{2}-2^{3\left(k+\frac{3}{2}\right)}=1$ is the Catalan's form. So $z=3$ and $3\left(k+\frac{3}{2}\right)=3$ which is impossible.

If $x=0$, then the diophantine equation becomes

$$
\begin{gathered}
1+19^{y}=z^{2} \\
z^{2}-1=19^{y} \\
(z-1)(z+1)=19^{y}
\end{gathered}
$$

where $z-1=19^{v}, z+1=19^{y-v}, y>2 v$. Then we obtain $19^{y-v}-19^{v}=2$ or $19^{v}\left(19^{y-2 v}-1\right)=2$. If $v=0$, then $19^{y}-1=2$, i.e. $19^{y}=3$; which is impossible. This completes the proof of theorem.

Theorem 3. When k is a non-negative integer, solutions of the Diophantine equation

$$
\begin{equation*}
8^{x}+17^{y}=z^{2} \tag{3}
\end{equation*}
$$

is given with $(x, y, z)=(2,1,9)$.
Proof. If $x=2 k$, then the equation (3) becomes

$$
8^{2 k}+17^{y}=z^{2}
$$

and then, we have

$$
z^{2}-8^{2 k}=17^{y}
$$

that is

$$
\left(z-8^{k}\right)\left(z+8^{k}\right)=17^{y}
$$

where $z-8^{k}=17^{v}$ and $z+8^{k}=17^{y-v}, y>2 v$ and v is a non-negative integer. Then we get $17^{v}\left(17^{y-2 v}-1\right)=2^{3 k+1}$.

If $v=0$, then we obtain $17^{y}-1=2^{3 k+1}$ or $17^{y}-2^{3 k+1}=1$. From the Catalan's Conjecture, it is obvious that $y=2$ and $3 k+1=3$ which is impossible.

For $y=1$, we obtain $17=1+2^{3 k+1}$. This gives us $k=1$. So a solution of the diophantine equation (3) is $(x, y, z)=(2,1,9)$. For $y=0$, we get $z^{2}-8^{2 k}=1$, i.e. $z^{2}-2^{6 k}=1$ which is no solution when $z=0$ or $z=1$. From the Catalan's Conjecture, $z=3$ and $6 k=3$ which is impossible too.

If we write $x=2 k+1$, then the Diophantine equation (3) becomes

$$
\begin{gathered}
8^{2 k+1}+17^{y}=z^{2} \\
z^{2}-8^{2 k+1}=17^{y} \\
\left(z-8^{k+\frac{1}{2}}\right)\left(z+8^{k+\frac{1}{2}}\right)=17^{y}
\end{gathered}
$$

where $z-8^{k+\frac{1}{2}}=17^{u}$ and $z+8^{k+\frac{1}{2}}=17^{y-u}, y>2 u$ and u is non-negative integer. Then we get $17^{y-u}-17^{u}=8^{k+\frac{3}{2}}$ or $17^{u}\left(17^{y-2 u}-1\right)=8^{k+\frac{3}{2}}$.

If $u=0$, then we obtain $17^{y}-1=8^{k+\frac{3}{2}}$ or $17^{y}-2^{3\left(k+\frac{3}{2}\right)}=1$. From Theorem 1 , it is obvious that $y=2$ and $3\left(k+\frac{3}{2}\right)=3$ which is impossible.

If $y=1$, then we get $17-8^{k+\frac{3}{2}}=1$ i.e. $17=1+8^{k+\frac{3}{2}}$ which is impossible, too. If $y=0$, then we get $z^{2}-8^{k+\frac{3}{2}}=1$ which has no solution when $z=0$ or $z=1$. $z^{2}-2^{3\left(k+\frac{3}{2}\right)}=1$ is the Catalan's form. So $z=3$ and $3\left(k+\frac{3}{2}\right)=3$ which is impossible.

If $x=0$, then the diophantine equation becomes

$$
\begin{gathered}
1+17^{y}=z^{2} \\
z^{2}-1=17^{y} \\
(z-1)(z+1)=17^{y}
\end{gathered}
$$

where $z-1=17^{v}, z+1=17^{y-v}, y>2 v$. Then we obtain $17^{y-v}-17^{v}=2$ or $17^{v}\left(17^{y-2 v}-1\right)=2$. If $v=0$, then $17^{y}-1=2$, i.e. $17^{y}=3$; which is impossible. This completes the proof of theorem.

ON THE DIOPHANTINE EQUATIONS

References

[1] D. Acu, On the Diophantine equations of type $a^{x}+b^{y}=c^{z}$, General Mathematics Vol. 13, No 1, 67-72, 2005.
[2] D. Acu, On the Diophantine equation, General Mathematics Vol. 15, No 4, 145-148, 2007.
[3] Z. Cao, A note on the Diophantine equation $a^{x}+b^{y}=c^{z}$, Acta Arithmetica XCI, No 1, 85-89, 1999.
[4] P. Mihailescu, Primary cyclotomic units and a proof of Catalan's Conjecture, J. Reine Angew Math. 572, 167-195, 2004.
[5] P. Ribenboim, Catalan's Conjecture, Academic Press. Inc. Boston, MA, 1994.
[6] J. Sandor, On a Diophantine equation $4^{x}+18^{y}=22^{z}$, Geometric theorems, Diophantine equations and Arithmetic functions, American Research Press Rehobot 4, 91-92, 2002.
[7] W. Sierpinski, Elementary Theory of Numbers, Warszawa, 1964.
[8] J. H. Silverman, A Friendly Introduction to Number Theory, 2nd ed. Prentice- Hall, Inc. New Jersey, 2001.
[9] A. Suvarnamani, Solutions of theDiophantine equation $2^{x}+p^{y}=z^{2}$, Int. J. of Mathematical Sciences and Applications, Vol 1, No 3, September 2011.
[10] A. Suvarnamani, A. Singta and S. Chotchaisthit, On two Diophantine equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$, Science and Technology RMUTT Journal, Vol 1, No 1, 2011.

Elementary Mathematics Education Programme, Ahmet Kelesoglu Education Faculty, Konya University.

E-mail address: bilge.peker@yahoo.com
Secondary MathematicsEducation Programme, Ahmet Kelesoglu Education Faculty, Konya University.

E-mail address: inag_s@hotmail.com

[^0]: Date: October 02, 2012.
 2000 Mathematics Subject Classification. Primary 11D61.
 Key words and phrases. Exponential Diophantine Equation,

