A NOTE ON THE TENSOR FORM OF CHARACTERISTIC EQUATION OF 4×4 MATRIX USED IN HARISH-CHANDRA'S PAPER 'ALGEBRA OF DIRAC-MATRICES'

VINOD KUMAR YADAV
Senior Research Fellow (CSIR), Department of Mathematics, V.S.S.D. (P.G.) College, Kanpur-208002, U.P. (INDIA),
E-mail: vinodkumaryadav3@gmail.com

Abstract

As the benifits of his beautiful formula for the product of Dirac-matrices Prof. HarishChandra evaluated the characteristic equation of a 4×4 matrix in his paper [1]. A trial to understand his ideas and his methods of calculation gives an internal pleasure at least to me. Through this paper I want to convey that pleasure to others also. The analysis given in this paper is useful in studying the relativistic wave equation of an electron.

Keywords: Characteristic polynomial, Characteristic equation, Trace, Dirac-matrices, Antisymmetric tensor.
AMS subject classification: 2010 MSC 11C20, $15 A 24$.

1. INTRODUCTION:

Let T be any 4×4 matrix. The matrix, $(T-t I)$ where I is the 4×4 identity matrix and t is an indeterminate, is called the characteristic matrix of T. It's determinant $\Delta(t)=\operatorname{det}(T-t I)$, which is a polynomial in t, is called the characteristic polynomial of T and $\Delta(t)=\operatorname{det}(T-t I)=0$ is called the characteristic equation of T. The general characteristic polynomial of any 4×4 matrix T is of the form

$$
\begin{equation*}
\Delta(t)=t^{4}-a_{1} t^{3}+a_{2} t^{2}-a_{3} t+a_{4} \tag{1}
\end{equation*}
$$

where $a_{1}, a_{2}, a_{3}, a_{4}$ are constants s.t. $a_{1}=$ trace of $T=\operatorname{tr}(T), a_{4}=$ determinant value of $T=\operatorname{det}(T)$ and a_{2}, a_{3} are the sum of the principal minors of order 2,3 respectively.

If we put $t=0$ in equation (1) we get the constant a_{4} i.e. $\operatorname{det}(T)$ and also if we differentiate equation (1), three times with respect to t, then put $t=0$ and divide by -6 , we get the constant a_{1} i.e. $\operatorname{tr}(T)$.

Harish-Chandra Formula [1] for the product of Dirac-matrices can be given as

$$
\begin{equation*}
E_{\lambda \mu} E_{\alpha \beta}=-\delta_{\lambda \alpha} \delta_{\mu \beta}+\delta_{\mu \alpha} \delta_{\lambda \beta}+E_{\lambda \alpha} \delta_{\mu \beta}-E_{\mu \alpha} \delta_{\lambda \beta}-E_{\lambda \beta} \delta_{\mu \alpha}+E_{\mu \beta} \delta_{\lambda \alpha}-\frac{i}{2} \varepsilon_{\lambda \mu \alpha \beta \gamma \rho} E^{\gamma \rho} \tag{2}
\end{equation*}
$$

VINOD KUMAR YADAV

where $E_{\lambda \mu}$ are Dirac matrices, $\delta_{\lambda \alpha}$ is a Kronecker delta function define as
$\delta_{\lambda \alpha}= \begin{cases}1, & \lambda=\alpha \\ 0, & \lambda \neq \alpha,\end{cases}$
and $\varepsilon_{\lambda \mu \alpha \beta \gamma \rho}$ is an antisymmetric tensor in all six indices with $\varepsilon_{012345}=1$. All the indices
$\lambda, \mu, \nu, \alpha, \beta, \gamma, \rho$ vary from 0 to 5 . If two or more than two indices value is same the quantity $\varepsilon_{\lambda \mu \alpha \beta \gamma \rho}$ vanishes. Following paper [1] (2) is an equation in mixed tensor of rank four in a six dimensional space whose metric tensor is $\delta_{\lambda \alpha}$ for lowering or raising the index. The summation convention appear in a term if the same index appearing once above and below in the same term. For example
(i) $E_{\lambda}^{\mu} E_{\mu \alpha}=\sum_{\mu=0}^{5} E_{\lambda \mu} E_{\mu \alpha}$,
(ii) $E^{\lambda \mu} \varepsilon_{\lambda \mu \alpha \beta \gamma \rho}=\sum_{\lambda, \mu=0}^{5} E_{\lambda \mu} \varepsilon_{\lambda \mu \alpha \beta \gamma \rho}$,
(iii) but no summation is intended in term $E_{\lambda \mu} E_{\mu \alpha}$.

Dirac-matrices [1,2] $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\}$ are the set of four matrices of order 4×4 whose entries are complex numbers, given by the relation

$$
\begin{equation*}
\gamma_{\lambda} \gamma_{\mu}+\gamma_{\mu} \gamma_{\lambda}=2 \delta_{\lambda \mu}, \quad(\lambda, \mu=1,2,3,4) \tag{4}
\end{equation*}
$$

these matrices are anticommute to each others with each square is identity matrix and generate a set of sixteen independent quantities which are also anticommute to each others (excluding identity matrix) can be given as

$$
1 ; \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4} ; \gamma_{1} \gamma_{2}, \gamma_{1} \gamma_{3}, \gamma_{1} \gamma_{4}, \gamma_{2} \gamma_{3}, \gamma_{2} \gamma_{4}, \gamma_{3} \gamma_{4} ; \gamma_{1} \gamma_{2} \gamma_{3}, \gamma_{1} \gamma_{2} \gamma_{4}, \gamma_{1} \gamma_{3} \gamma_{4}, \gamma_{2} \gamma_{3} \gamma_{4} ; \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4} .
$$

Since square of Dirac-matrices is 1 (identity matrix) but here some quantities square is -1 . So if we multiply i by these quantities then all 15 quantities satisfy the equation (4) and we call all of them Dirac-matrices and which can be given as
$1 ; \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4} ; i \gamma_{1} \gamma_{2}, i \gamma_{1} \gamma_{3}, i \gamma_{1} \gamma_{4}, i \gamma_{2} \gamma_{3}, i \gamma_{2} \gamma_{4}, i \gamma_{3} \gamma_{4} ; i \gamma_{1} \gamma_{2} \gamma_{3}, i \gamma_{1} \gamma_{2} \gamma_{4}, i \gamma_{1} \gamma_{3} \gamma_{4}, i \gamma_{2} \gamma_{3} \gamma_{4} ; \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$.
For simplicity and quantities which can be used in equation (2), we can change above matrices in one index notation, suppose
$E_{1}=i \gamma_{1}, E_{2}=i \gamma_{2}, E_{3}=i \gamma_{3}, E_{4}=i \gamma_{4}$,
$E_{5}=i\left(i \gamma_{1} \gamma_{2}\right), E_{6}=i\left(i \gamma_{1} \gamma_{3}\right), E_{7}=i\left(i \gamma_{1} \gamma_{4}\right), E_{8}=i\left(i \gamma_{2} \gamma_{3}\right), E_{9}=i\left(i \gamma_{2} \gamma_{4}\right), E_{10}=i\left(i \gamma_{3} \gamma_{4}\right)$,
$E_{11}=i\left(i \gamma_{1} \gamma_{2} \gamma_{3}\right), E_{12}=i\left(i \gamma_{1} \gamma_{2} \gamma_{4}\right), E_{13}=i\left(i \gamma_{1} \gamma_{3} \gamma_{4}\right), E_{14}=i\left(i \gamma_{2} \gamma_{3} \gamma_{4}\right)$,
$E_{15}=i\left(\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}\right), E_{16}=i(1)$.

A NOTE ON THE TENSOR FORM OF CHARACTERISTIC EQUATION..

So equation (4) can be written as

$$
\begin{equation*}
E_{\lambda} E_{\mu}+E_{\mu} E_{\lambda}=-2 \delta_{\lambda \mu} . \quad(\lambda, \mu=1 \text { to } 15,) \tag{5}
\end{equation*}
$$

Hence $i, E_{\lambda}(\lambda=1,2,3, \ldots \ldots ., 15)$ form a complete set with properties $E_{\lambda}^{2}=-1(\lambda=1$ to 16$)$ and $E_{\lambda} E_{\mu}=-E_{\mu} E_{\lambda},(\lambda, \mu=1$ to $15, \lambda \neq \mu)$. As in paper [1] we can change one index notation of these sixteen quantities into two indices notation with help of following rules

$$
\begin{array}{lll}
E_{\lambda \mu}=E_{\lambda} E_{\mu}, & (\lambda \neq \mu) & (\lambda=0,1,2,3,4,5) \\
E_{\lambda \mu}=-E_{\mu \lambda}, & (\lambda \neq \mu) & (\lambda=0,1,2,3,4,5) \\
E_{\lambda}=E_{0 \lambda}=-E_{\lambda 0}, & & (\lambda=1,2,3,4,5) \\
E_{\lambda \lambda}=0 . & (\lambda=0,1,2,3,4,5)
\end{array}
$$

Then $i, E_{\lambda \mu}(\lambda \neq \mu, \lambda, \mu=0,1,2,3,4,5)$ form a complete set of Dirac-matrices with regard that two quantities which differ by a numerical factor $-1, i$ or $-i$ is essentially the same i.e.
$i, E_{\lambda \mu}=\left\{\begin{array}{llllll}E_{00} & E_{01} & E_{02} & E_{03} & E_{04} & E_{05} \\ E_{10} & E_{11} & E_{12} & E_{13} & E_{14} & E_{15} \\ E_{20} & E_{21} & E_{22} & E_{23} & E_{24} & E_{25} \\ E_{30} & E_{31} & E_{32} & E_{33} & E_{34} & E_{35} \\ E_{40} & E_{41} & E_{42} & E_{43} & E_{44} & E_{45} \\ E_{50} & E_{51} & E_{52} & E_{53} & E_{54} & E_{55}\end{array}\right\}$,
here the diagonal entries of $E_{\lambda \mu}$ are zero and entries below the diagonal are negative times corresponding entries in above the diagonal. So $i, E_{\lambda \mu}$ are consisting only sixteen distinct quantities $i ; E_{01}, E_{02}, E_{03}, E_{04}, E_{05} ; E_{12}, E_{13}, E_{14}, E_{15} ; E_{23}, E_{24}, E_{25} ; E_{34}, E_{35} ; E_{45}$, which are anticommute to each others (excluding identity matrix i) and each square is -1 , form a complete set of matrices of order 4×4. Hence these 16 matrices form a basis of a vector space of dimension 16 over the field of complex numbers. So any 4×4 matrix can be written as linear combination of these 16 matrices. This linear combination has been written in condensed form in next section with help of tensor calculus [3].

Prof. Harish-Chandra evaluated characteristic equation of any 4×4 matrix by using formula (2) with the help of two tensor identities [1]. The proof of these tensor identities have not given in his paper. I have verified these tensor identities and trying to prove them. These tensor identities can be given as

$$
\begin{align*}
\varepsilon_{\alpha \beta \gamma \delta \lambda \rho} \varepsilon^{\lambda \rho \alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}} t_{\alpha^{\prime} \beta^{\prime}} t_{\gamma^{\prime} \delta^{\prime}} & =16\left(t_{\alpha \beta} t_{\gamma \delta}-t_{\alpha \gamma} t_{\beta \delta}-t_{\alpha \delta} t_{\gamma \beta}\right), \tag{6}\\
t_{\alpha \lambda} t_{\beta \rho} \varepsilon^{\alpha \beta \mu \nu \sigma \tau} t_{\mu \nu} t_{\sigma \tau} & =\frac{1}{6} t_{\lambda \rho} \varepsilon^{\alpha \beta \mu \nu \sigma \tau} t_{\alpha \beta} t_{\mu \nu} t_{\sigma \tau} \tag{7}
\end{align*}
$$

VINOD KUMAR YADAV

2. DISCUSSION:

Let T be any 4×4 matrix can be written [1] as

$$
\begin{equation*}
T=t+t_{\lambda \mu} E^{\lambda \mu} \tag{8}
\end{equation*}
$$

where $t, t_{\lambda \mu}$ are ordinary numbers commute to all other quantities s.t. $t_{\lambda \mu}=-t_{\mu \lambda}$ and $E_{\lambda \mu}$ are 15 Diracmatrices and t represent identity matrix which multiply by number t. Now here we have first evaluated the characteristic polynomial of T. Equation (8) can be written as

$$
\begin{equation*}
T-t=t_{\lambda \mu} E^{\lambda \mu} \tag{9}
\end{equation*}
$$

squaring both side of above equation we get
$(T-t)^{2}=\left(t_{\lambda \mu} E^{\lambda \mu}\right)^{2}$,

$$
\begin{aligned}
& =t_{\lambda \mu} E^{\lambda \mu} t_{\alpha \beta} E^{\alpha \beta}=\sum_{\lambda, \mu, \alpha, \beta=0}^{5} t_{\lambda \mu} t_{\alpha \beta} E_{\lambda \mu} E_{\alpha \beta} \quad \text { (by using summation convention) } \\
& =\sum_{\lambda, \mu, \alpha, \beta=0}^{5} t_{\lambda \mu} t_{\alpha \beta}\left\{-\delta_{\lambda \alpha} \delta_{\mu \beta}+\delta_{\mu \alpha} \delta_{\lambda \beta}+E_{\lambda \alpha} \delta_{\mu \beta}-E_{\mu \alpha} \delta_{\lambda \beta}-E_{\lambda \beta} \delta_{\mu \alpha}+E_{\mu \beta} \delta_{\lambda \alpha}-\frac{i}{2} \varepsilon_{\lambda \mu \alpha \beta \gamma \rho} E^{\gamma \rho}\right\}
\end{aligned}
$$

here we use well known Harish-Chandra Formula (2) for the product of Dirac-matrices.
$\operatorname{Now}(T-t)^{2}=-\sum_{\lambda, \mu=0}^{5} t_{\lambda \mu} t_{\lambda \mu}+\sum_{\lambda, \mu=0}^{5} t_{\lambda \mu} t_{\mu \lambda}+\sum_{\lambda, \mu, \alpha=0}^{5} t_{\lambda \mu} t_{\alpha \mu} E_{\lambda \alpha}-\sum_{\lambda, \mu, \alpha=0}^{5} t_{\lambda \mu} t_{\alpha \lambda} E_{\mu \alpha}$

$$
-\sum_{\lambda, \mu, \beta=0}^{5} t_{\lambda \mu} t_{\mu \beta} E_{\lambda \beta}+\sum_{\lambda, \mu, \beta=0}^{5} t_{\lambda \mu} t_{\lambda \beta} E_{\mu \beta}-\frac{i}{2} \sum_{\lambda, \mu, \alpha, \beta=0}^{5} t_{\lambda \mu} t_{\alpha \beta} \varepsilon_{\lambda \mu \alpha \beta \gamma \rho} E^{\gamma \rho}
$$

by means of $t_{\mu \lambda}=-t_{\lambda \mu}$ in second term and opening summation in third, fourth, fifth, sixth term with using $E_{\lambda \mu}=-E_{\mu \lambda}$, these four term vanishes then so that

$$
(T-t)^{2}=-2 \sum_{\lambda, \mu=0}^{5} t_{\lambda \mu} t_{\lambda \mu}-\frac{i}{2} \sum_{\lambda, \mu, \alpha, \beta=0}^{5} t_{\lambda \mu} t_{\alpha \beta} \varepsilon_{\lambda \mu \alpha \beta \gamma \rho} E^{\gamma \rho}=-2 t_{\lambda \mu} t^{\lambda \mu}-\frac{i}{2} t^{\lambda \mu} t^{\alpha \beta} \varepsilon_{\lambda \mu \alpha \beta \gamma \rho} E^{\gamma \rho}
$$

for convenience change summation indices in the above equation then we above

$$
(T-t)^{2}+2 t_{\mu \nu} t^{\mu \nu}=-\frac{i}{2} t^{\alpha \beta} t^{\gamma \delta} \varepsilon_{\alpha \beta \gamma \delta \lambda \rho} E^{\lambda \rho}
$$

again squaring both side of above equation we get

$$
\left\{(T-t)^{2}+2 t_{\mu \nu} t^{\mu \nu}\right\}^{2}=\left\{-\frac{i}{2} t^{\alpha \beta} t^{\gamma \delta} \varepsilon_{\alpha \beta \gamma \delta \lambda \rho} E^{\lambda \rho}\right\}^{2}
$$

A NOTE ON THE TENSOR FORM OF CHARACTERISTIC EQUATION...

$$
\begin{aligned}
& =\left\{-\frac{i}{2} t^{\alpha \beta} t^{\gamma \delta} \varepsilon_{\alpha \beta \gamma \delta \lambda \rho} E^{\lambda \rho}\right\}\left\{-\frac{i}{2} t^{\alpha^{\prime} \beta^{\prime}} t^{\gamma^{\prime} \delta^{\prime}} \varepsilon_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime} \nu} E^{\mu \nu}\right\} \\
& =\sum_{\lambda, \rho, \mu, \nu=0}^{5}\left\{-\frac{1}{4} t^{\alpha \beta} t^{\gamma \delta} \varepsilon_{\alpha \beta \gamma \gamma \delta \lambda} t^{t^{\prime} \beta^{\prime}} t^{\gamma^{\prime} \delta^{\prime}} \varepsilon_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}\langle\nu} E_{\lambda \rho} E_{\mu \nu}\right\} \\
& \text { (by using formula (2) in } E_{\lambda \rho} E_{\mu \nu} \text {) } \\
& =\sum_{\lambda, \rho, \mu, v=0}^{5}\left\{-\frac{1}{4} t^{\alpha \beta} t^{\gamma \delta} \varepsilon_{\alpha \beta \gamma \gamma \delta \lambda \rho^{2}} \alpha^{\prime \beta^{\prime}} t^{\gamma \delta^{\prime} \varepsilon^{\prime}} \varepsilon_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime} \mu \nu}\left\{\begin{array}{l}
-\delta_{\lambda \mu} \delta_{\rho \nu}+\delta_{\rho \mu} \delta_{\lambda \nu}+E_{\lambda \mu} \delta_{\rho \nu}-E_{\rho \mu} \delta_{\lambda \nu} \\
-E_{\lambda \nu} \delta_{\rho \mu}+E_{\rho \nu} \delta_{\lambda \mu}-\frac{i}{2} \varepsilon_{\lambda \rho \mu \nu \sigma \tau} E^{\sigma \tau}
\end{array}\right\}\right\} \\
& =-\frac{1}{4} t^{\alpha \beta} t^{\gamma \delta} t^{\alpha^{\prime} \beta^{\prime}} t^{\gamma^{\prime} \delta^{\prime}}\left\{-\sum_{\lambda, \rho=0}^{5} \varepsilon_{\alpha \beta \gamma \delta \lambda \rho} \varepsilon_{\alpha \alpha^{\prime} \beta^{\prime} \gamma^{\prime} \lambda \rho}+\sum_{\lambda, \rho=0}^{5} \varepsilon_{\alpha \beta \gamma \delta \lambda \rho} \varepsilon_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime} \rho \lambda}+\sum_{\lambda, \rho, \mu=0}^{5} \varepsilon_{\alpha \beta \gamma \delta \lambda \rho \rho} \varepsilon_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime} \mu \rho} E_{\lambda \mu}\right. \\
& -\sum_{\lambda, \rho, \mu=0}^{5} \varepsilon_{\alpha \beta \gamma \delta \lambda \rho} \varepsilon_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \gamma^{\prime} \mu \lambda} E_{\rho \mu}-\sum_{\lambda, \rho, v=0}^{5} \varepsilon_{\alpha \beta \gamma \delta \lambda \rho} \varepsilon_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \rho v} E_{\lambda \nu}+\sum_{\lambda, \rho, v=0}^{5} \varepsilon_{\alpha \beta \gamma \delta \lambda \rho} \varepsilon_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \lambda v} E_{\rho v} \\
& \left.-\frac{i}{2} \sum_{\lambda, \rho, \mu, \nu=0}^{5} \varepsilon_{\alpha \beta \gamma \delta \lambda \rho} \varepsilon_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime} \mu \nu} \varepsilon_{\lambda \rho \mu \nu \sigma \tau} E^{\sigma \tau}\right\},
\end{aligned}
$$

we used summation convention in $1^{\text {st }}, 2^{\text {nd }}, 7^{\text {th }}$ terms and $3^{\text {rd }}, 4^{\text {th }}$ terms cancel out the terms $5^{\text {th }}, 6^{\text {th }}$ respectively in the above equation then

$$
\begin{aligned}
\left\{(T-t)^{2}\right. & \left.+2 t_{\mu \nu} t^{\mu \nu}\right\}^{2} \\
& =-\frac{1}{4} t^{\alpha \beta} t^{\gamma \delta}(-2) \varepsilon_{\alpha \beta \gamma \delta \lambda \rho} \varepsilon^{\lambda \rho \alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}} t_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}}+\frac{i}{8} \varepsilon^{\alpha \beta \gamma \delta \lambda \rho} t_{\alpha \beta} t_{\gamma \delta} \varepsilon^{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime} \mu \nu} t_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}} \varepsilon_{\lambda \rho \mu \nu \sigma \tau} E^{\sigma \tau} \\
& =\frac{1}{2} t^{\alpha \beta} t^{\gamma \delta} \varepsilon_{\alpha \beta \gamma \delta \lambda \rho} \varepsilon^{\lambda \rho \alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}} t_{\alpha^{\prime} \beta^{\prime}} t_{\gamma^{\prime} \delta^{\prime}}+\frac{i}{8} \varepsilon^{\alpha \beta \mu v \sigma \tau} t_{\mu \nu} t_{\sigma \tau} \varepsilon^{\gamma \delta \mu^{\prime} v^{\prime} \sigma^{\prime} \tau^{\prime}} t_{\mu^{\prime} v^{\prime}} t_{\sigma^{\prime} \tau^{\prime}} \varepsilon_{\alpha \beta \gamma \delta \lambda \rho^{\prime}} E^{\lambda \rho},
\end{aligned}
$$

for convenience here we changed summation indices in second term of right side of equation then above equation can be written as

$$
\begin{align*}
& \left\{(T-t)^{2}+2 t_{\mu \nu} t^{\mu \nu}\right\}^{2}-\frac{1}{2} t^{\alpha \beta} t^{\gamma \delta} \varepsilon_{\alpha \beta \gamma \delta \lambda \rho} \varepsilon^{\lambda \rho \alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}} t_{\alpha^{\prime} \beta^{\prime}, \nu_{\gamma^{\prime} \delta^{\prime}}} \\
& =\frac{i}{8} \varepsilon^{\alpha \beta \mu \nu \sigma \tau} t_{\mu \nu} t_{\sigma \tau} \varepsilon^{\gamma \delta \mu^{\prime} v^{\prime} \sigma^{\prime} \tau^{\prime}} t_{\mu^{\prime} \nu^{\prime}} t_{\sigma^{\prime} \tau^{\prime}} \varepsilon_{\alpha \beta \lambda \rho \gamma \delta} E^{\lambda \rho} \\
& =\frac{i}{8} \varepsilon^{\alpha \beta \mu \nu \sigma \tau} t_{\mu \nu} t_{\sigma \tau}\left\{\varepsilon_{\alpha \beta \lambda \rho \gamma \delta} \varepsilon^{\gamma \delta \mu^{\prime} v^{\prime} \sigma^{\prime} \tau^{\prime}} t_{\mu^{\prime} v^{\prime},} t_{\sigma^{\prime} \tau^{\prime}}\right\} E^{\lambda \rho} \tag{6}\\
& =\frac{i}{8} \varepsilon^{\alpha \beta \mu \nu \sigma \tau} t_{\mu \nu} t_{\sigma \tau}\left\{16\left\{t_{\alpha \beta} t_{\lambda \rho}-t_{\alpha \lambda} t_{\beta \rho}-t_{\alpha \rho} t_{\lambda \beta}\right\}\right\} E^{\lambda \rho}
\end{align*}
$$

VINOD KUMAR YADAV

$=2 i \varepsilon^{\alpha \beta \mu \nu \sigma \tau} t_{\mu \nu} t_{\sigma \tau}\left\{t_{\alpha \beta} t_{\lambda \rho} E^{\lambda \rho}-2 t_{\alpha \lambda} t_{\beta \rho} E^{\lambda \rho}\right\}$
(by using equation (9))
$=2 i \varepsilon^{\alpha \beta \mu \nu \sigma \tau} t_{\alpha \beta} t_{\mu \nu} t_{\sigma \tau}(T-t)-4 i t_{\alpha \lambda} t_{\beta \rho} \varepsilon^{\alpha \beta \mu \nu \sigma \tau} t_{\mu \nu} t_{\sigma \tau} E^{\lambda \rho}$
So $\quad\left\{(T-t)^{2}+2 t_{\mu \nu} \nu^{\mu \nu}\right\}^{2}-\frac{1}{2} t^{\alpha \beta} t^{\gamma \delta} \varepsilon_{\alpha \beta \gamma \gamma \lambda \lambda \rho} \varepsilon^{\lambda \rho \alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}} t_{\alpha^{\prime} \beta^{\prime}} t_{\gamma^{\prime} \delta^{\prime}}$

$$
\begin{equation*}
=2 i \varepsilon^{\alpha \beta \mu \nu \sigma \tau} t_{\alpha \beta} t_{\mu \nu} t_{\sigma \tau}(T-t)-4 i t_{\alpha \lambda} t_{\beta \rho} \varepsilon^{\alpha \beta \mu \nu \sigma \tau} t_{\mu \nu} t_{\sigma \tau} E^{\lambda \rho} . \tag{10}
\end{equation*}
$$

But the quantity $-4 i t_{\alpha \lambda} t_{\beta \beta} \varepsilon^{\alpha \beta \beta \nu \sigma \tau} t_{\mu \nu} t_{\sigma \tau} E^{\lambda \rho}$

$$
\begin{aligned}
& =-4 i\left\{\frac{1}{6} t_{\lambda \rho} \varepsilon^{\alpha \beta \mu \nu \sigma \tau} t_{\alpha \beta} t_{\mu \nu} t_{\sigma \tau}\right\} E^{\lambda \rho} \quad \quad \text { (using second tensor identity (7)) } \\
& =-\frac{4}{6} i \varepsilon^{\alpha \beta \mu \nu \sigma \tau} t_{\alpha \beta} t_{\mu \nu} t_{\sigma \tau} t_{\lambda \rho} E^{\lambda \rho} \quad \text { (again using equation (9)) } \\
& =-\frac{2}{3} i \varepsilon^{\alpha \beta \mu \nu \sigma \tau} t_{\alpha \beta} t_{\mu \nu} t_{\sigma \tau}(T-t)
\end{aligned}
$$

Also the quantity $-\frac{1}{2} t^{\alpha \beta} t^{\gamma \delta} \varepsilon_{\alpha \beta \gamma \gamma \delta \rho} \rho^{2 \rho \alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}} t_{\alpha^{\prime} \beta^{\prime} \cdot t_{\gamma^{\prime} \delta^{\prime}} \quad \quad \text { (again using first tensor identity (6)) }}$

$$
\begin{aligned}
& =-\frac{1}{2} t^{\alpha \beta} t^{\gamma \delta}\left\{16\left(t_{\alpha \beta} t_{\gamma \delta}-t_{\alpha \gamma} t_{\beta \delta}-t_{\alpha \delta} t_{\gamma \beta}\right)\right\} \\
& =-8 t^{\alpha \beta} t^{\gamma \delta}\left(t_{\alpha \beta} t_{\gamma \delta}-t_{\alpha \gamma} t_{\beta \delta}-t_{\alpha \delta} t_{\gamma \beta}\right) \\
& =-8\left\{\left(t^{\alpha \beta} t_{\alpha \beta}\right)^{2}-t^{\alpha \beta}\left(-t^{\gamma \delta}\right)\left(-t_{\delta \alpha}\right) t_{\beta \gamma}-t^{\alpha \beta} t^{\gamma \delta}\left(-t_{\delta \alpha}\right)\left(-t_{\beta \gamma}\right)\right\} \\
& =-8\left\{\left(t^{\alpha \beta} t_{\alpha \beta}\right)^{2}-t^{\alpha \beta} t_{\beta \gamma} t^{\gamma \delta} t_{\delta \alpha}-t^{\alpha \beta} t_{\beta \gamma} t^{\nu \delta} t_{\delta \alpha}\right\} \\
& =-8\left\{\left(t^{\alpha \beta} t_{\alpha \beta}\right)^{2}-2 t^{\alpha \beta} t_{\beta \gamma} t^{\gamma \delta} t_{\delta \alpha}\right\} .
\end{aligned}
$$

Substituting these values in equation (10) so that

$$
\left\{(T-t)^{2}+2 t_{\mu \nu} t^{\mu \nu}\right\}^{2}-8\left\{\left(t^{\alpha \beta} t_{\alpha \beta}\right)^{2}-2 t^{\alpha \beta} t_{\beta \gamma} t^{\gamma \delta} t_{\delta \alpha}\right\}=\frac{4}{3} i \varepsilon^{\alpha \beta \beta \nu \sigma t} t_{\alpha \beta} t_{\mu \nu} t_{\sigma \tau}(T-t),
$$

for convenience again changed the summation indices in right side of equation as

$$
\begin{equation*}
\left\{(T-t)^{2}+2 t_{\mu \nu} t^{\mu \nu}\right\}^{2}-8\left\{\left(t^{\alpha \beta} t_{\alpha \beta}\right)^{2}-2 t^{\alpha \beta} t_{\beta \gamma} t^{\nu \delta} t_{\delta \alpha}\right\}=\frac{4}{3} i t_{\alpha \beta} t_{\gamma \delta} t_{\lambda \rho} \varepsilon^{\alpha \beta \gamma \delta \lambda \rho}(T-t) . \tag{11}
\end{equation*}
$$

A NOTE ON THE TENSOR FORM OF CHARACTERISTIC EQUATION...

So Characteristic polynomial of matrix T can be

$$
\begin{equation*}
\Delta(T)=\left\{(T-t)^{2}+2 t_{\mu \nu} t^{\mu \nu}\right\}^{2}-8\left\{\left(t^{\alpha \beta} t_{\alpha \beta}\right)^{2}-2 t^{\alpha \beta} t_{\beta \gamma} t^{\gamma \delta} t_{\delta \alpha}\right\}-\frac{4}{3} i t_{\alpha \beta} t_{\gamma \delta} t_{\lambda \rho} \varepsilon^{\alpha \beta \gamma \delta \lambda \rho}(T-t), \tag{12}
\end{equation*}
$$

also Characteristic equation of matrix T is

$$
\begin{equation*}
\left\{(T-t)^{2}+2 t_{\mu \nu} t^{\mu \nu}\right\}^{2}-8\left\{\left(t^{\alpha \beta} t_{\alpha \beta}\right)^{2}-2 t^{\alpha \beta} t_{\beta \gamma} t^{\gamma \delta} t_{\delta \alpha}\right\}-\frac{4}{3} i t_{\alpha \beta} t_{\gamma \delta} t_{\lambda \rho} \varepsilon^{\alpha \beta \gamma \delta \lambda \rho}(T-t)=0 \tag{13}
\end{equation*}
$$

and put $T=0$ in right side of equation (12) we get the determinant value of matrix T as

$$
\begin{equation*}
\operatorname{det}(T)=\left\{t^{2}+2 t_{\mu \nu} t^{\mu \nu}\right\}^{2}-8\left\{\left(t^{\alpha \beta} t_{\alpha \beta}\right)^{2}-2 t^{\alpha \beta} t_{\beta \gamma} t^{\gamma \delta} t_{\delta \alpha}\right\}+\frac{4}{3} i t_{\alpha \beta} t_{\gamma \delta} t_{\lambda \rho} \varepsilon^{\alpha \beta \gamma \delta \lambda \rho} t \tag{14}
\end{equation*}
$$

Now for trace of matrix T,
since $\left\{(T-t)^{2}+2 t_{\mu \nu} t^{\mu \nu}\right\}^{2}=\left\{T^{2}+t^{2}-2 T t+2 t_{\mu \nu} t^{\mu \nu}\right\}^{2}$

$$
\begin{array}{r}
=T^{4}+t^{4}+4 T^{2} t^{2}+4\left(t_{\mu \nu} t^{\mu \nu}\right)^{2}+2 T^{2} t^{2}-4 T^{3} t+4 T^{2}\left(t_{\mu \nu} t^{\mu \nu}\right) \\
-4 T t^{3}+4 t^{2}\left(t_{\mu \nu} t^{\mu \nu}\right)-8 T t\left(t_{\mu \nu} t^{\mu \nu}\right)
\end{array}
$$

so equation (12) becomes

$$
\begin{aligned}
\Delta(T)=T^{4}+ & t^{4}+4 T^{2} t^{2}+4\left(t_{\mu \nu} t^{\mu \nu}\right)^{2}+2 T^{2} t^{2}-4 T^{3} t+4 T^{2}\left(t_{\mu \nu} t^{\mu \nu}\right)-4 T t^{3}+4 t^{2}\left(t_{\mu \nu} t^{\mu \nu}\right) \\
& -8 T t\left(t_{\mu \nu} t^{\mu \nu}\right)-8\left\{\left(t^{\alpha \beta} t_{\alpha \beta}\right)^{2}-2 t^{\alpha \beta} t_{\beta \gamma} t^{\gamma \delta} t_{\delta \alpha}\right\}-\frac{4}{3} i t_{\alpha \beta} t_{\gamma \delta} t_{\lambda \rho} \varepsilon^{\alpha \beta \gamma \delta \lambda \rho}(T-t)
\end{aligned}
$$

differentiate above equation three times with respect to T then put $T=0$ and divide by -6 we get trace of matrix T.

$$
\begin{equation*}
\frac{d^{3} \Delta(T)}{d T^{3}}=24 T-24 t, \quad\left[\frac{d^{3} \Delta(T)}{d T^{3}}\right]_{T=0}=0-24 t, \therefore \operatorname{tr}(T)=\frac{1}{-6}\left[\frac{d^{3}(\Delta(T))}{d T^{3}}\right]_{T=0}=4 t \tag{15}
\end{equation*}
$$

equation (15) agrees with the result given in papers [1].

3. CONCLUSION:

The above reckoning helps in studying the whole paper [1] and gives a new method to find out the characteristic equation and determinant value of any 4×4 matrix in tensor form with the help of HarishChandra Formula for the product of Dirac-matrices.

VINOD KUMAR YADAV

ACKNOWLEDGEMENT:

I am grateful to my supervisor Dr. T. N. Trivedi for guidance and encouragement during the study of this work.

I am also thankful to CSIR, New Delhi, India for providing financial support.

REFERENCES:

[1] Harish-Chandra, 1945, "Algebra of the Dirac-Matrices", Proceedings of the Indian Academy of Sciences, 22, pp. 30-41.
[2] Roman, P., 1964, Theory of Elementary Particles, North-Holland Publishing Company, Amsterdam, Chap.2.
[3] Weatherburn, C. E., 1966, An Introduction to Riemannian Geometry and the Tensor Calculus, Cambridge University Press, Cambridge.

