Extension Of the Conjecture Of Gratzer

Seema Bagora¹ C.L.Parihar² Madhu Tiwari³

1 Department Of Mathematics, Prestige Institute Of Technology, Indore India e-mail: <u>bagoraseema@gmail.com</u>

2 Indian Academy OF mathematics 15, Kaushaliyapuri, Chitawad Road, Indore – 452001, India e-mail: profparihar@hotmail.com

> 3 Department Of Mathematics G.D.C.College, Ujjain India e-mail:madhuchinu@yahoo.co.in

> > Abstract

In this paper we extend two results of Gratzer on Distributive Lattice.

Key Words: Lattice, Distributive lattice, Projective space, linear subspace,

MSC. 2010: 06BXX,06DXX,06B25,06F20

1. Introduction:

Gratzer conjectured that If a lattice has a representation of Type 2 then it is modular, and the linear subspaces of a projective space form a Modular geometric Lattice. In this paper we establish this conjecture for distributive lattices.

We first give some terms which are useful in this paper.:

- (1.1) Representation of Type 2: [1, P.197]: A representation $\alpha : L \rightarrow Part (A)$ is called of *type 2* iff for all $a, b \in L$ and $x, y \square A$ $x \equiv y (a \lor b) \alpha$ iff there exist $z_1, z_2 \square A$ such that $x \equiv z_1 (a \alpha), \quad z_1 \equiv z_2 (b \alpha), \text{ and } z_1 \equiv y (a \alpha),$
- (1.2) **Projective space [1,P.202]:** If A be a set and L be a collection of subset of A.
 - (A, L) is called Projective space iff the following properties hold:
 - (i) Every $l \Box L$ has at least two elements.
 - (ii) For any two distinct p and $q \in A$ there is exactly one $l \in L$ satisfying p and $q \in L$.
 - (iii) For p, q, r, x, $y \in A$ and $l_1, l_2 \in L$ satisfying p, q, $x \in l_1$ and q, r, $y \in l_2$. there exist $z \square A$ and $l_3 l_4 \in L$ satisfying p, r, $z \in l_3$ and x, y, $z \in l_4$.
- (1.3) Linear subspace [1,P203]: A set $X \subseteq A$ is called linear subspace iff p and $q \supseteq X$ imply that $p + q \subseteq X$. If X and Y are linear subspaces then define $X + Y = U(x + y | x \Box X \text{ and } y \Box Y).$

2. Main Theorems:

Theorem (2.1) A Lattice L has a representation of type 2, then it is Distributive.

Proof: Let L have a representation $\alpha: L \rightarrow part(A)$ of type 2, and $a, b, c \in L$, $a \ge c$.

Since, in any lattice $((a \land b) \lor c \le (a \lor c) \land (b \lor c)$.

we have to prove

$$(a \land b) \lor c \ge (a \lor c) \land (b \lor c)$$
 . so let x,y $\in A$. and

let $x \equiv y((a \land (b \lor c))\alpha)$, that is

$$x \equiv y(a\alpha)$$
 and $x \equiv y((b \lor c)\alpha)$.

As α is a type 2 representation there exist z_1 and z_2 such that

 $x \equiv z_1(c\alpha)$. $z_1 \equiv z_2(b\alpha)$ And $z_2 \equiv y(c\alpha)$

Since $c \le a$, we obtain that $z_1 \equiv x(a\alpha)$, $x \equiv y(a\alpha)$ and $y \equiv z_2(a\alpha)$;

thus $z_1 \equiv z_2(a\alpha)$

Also $z_1 \equiv z_2(b\alpha)$, hence $z_1 \equiv z_2((\alpha \wedge b)\alpha)$ and $x \equiv y(\alpha\alpha)$

Hence $x \equiv y(((a \land b) \lor (a \land c))\alpha)$, implying $(a \land b) \lor c \ge (a \lor c) \land (b \lor c)$.

Theorem (2.2): *The linear subspaces of a projective space form a Distributive geometric Lattice.*

Proof: Since the intersection of any number of linear subspaces is a linear subspace again, we have a closure space (A, -). For $X \subseteq A$, the closure x can be described as follows: set X o = X, X i = X + X, ..., X n = X n - l + X n - l, ...; then $\overline{X} = | [(X_i - i = 0, 1, 2,)]$

It follows immediately, that (A, -) is an algebraic closure space and so the linear subspaces form an algebraic lattice and for the linear subspaces X and Y,

 $X \lor Y = X \cup Y$. If X, Y, and Z are linear subspaces and $Z \subseteq X$ then $(X \land Y) \lor (X \land Z) \subseteq X \land (Y \lor Z)$.

Now let $p \in X \land (Y \lor Z)$, *i.e.* $p \in X$ and $p \in Y \lor Z$ Since $p \in Y \lor Z = Y + Z$, there exist $p_y \in Y$ and $p_z \in Z$ such that $p \in p_y + p_z$ from $Z \subseteq X$, it is clear that p and $p_z \in X$, if $p = p_z$, then $p \in z$ then so $p \in (x \land y) \lor (x \lor z)$ if $p \neq p_z$ then $p_y \in p + p_z \subseteq X$.

thus $p_y \in X \land Y$ and $p_z \in (X \land Z)$ thus given lattice is distributive.

References:

1. G.Birkhoff, Lattice theory, 2nd ed., newyork 1948.

2. R. Freese, G. Gr[°]atzer, and E. T. Schmidt, *On complete congruence* . . *lattices of complete modular lattices*, International J. of Algebra and Computation 1 (1991), pp. 147–160.

3. G.Gratzer,Lattice theory.First concepts and distributive lattices.(W.H.Freeman and . Company San Francisco,1971).

4. G. Gratzer and E. T. Schmidt, Algebraic lattices as congruence lattices: The **m**-complete case, The Borkhoff meeting (1991, Darmstadt)