Extension Of the Conjecture Of Gratzer

Seema Bagora ${ }^{1}$ C.L.Parihar ${ }^{2}$ Madhu Tiwari ${ }^{3}$
1 Department Of Mathematics, Prestige Institute Of Technology, Indore India
e-mail: bagoraseema@gmail.com
2 Indian Academy OF mathematics 15,Kaushaliyapuri, Chitawad Road, Indore - 452001, India e-mail: profparihar@hotmail.com
3 Department Of Mathematics G.D.C.College, Ujjain India e-mail:madhuchinu@yahoo.co.in

Abstract

In this paper we extend two results of Gratzer on Distributive Lattice.
Key Words: Lattice, Distributive lattice,Projective space, linear subspace,
MSC. 2010: 06BXX,O6DXX ,06B25,06F20

1. Introduction:

Gratzer conjectured that If a lattice has a representation of Type 2 then it is modular, and the linear subspaces of a projective space form a Modular geometric Lattice. . In this paper we establish this conjecture for distributive lattices.

We first give some terms which are useful in this paper.:
(1.1) Representation of Type 2: [1, P.197]: A representation $\alpha: \mathrm{L} \rightarrow \operatorname{Part}(\mathrm{A})$ is called of type 2 iff for all $\mathrm{a}, \mathrm{b} \in \mathrm{L}$ and $\mathrm{x}, \mathrm{y} \square \mathrm{A}$ $\mathrm{x} \equiv \mathrm{y}(\mathrm{a} \mathrm{Vb}) \alpha)$ iff there exist $\mathrm{z}_{1}, \mathrm{z}_{2} \square \mathrm{~A}$ such that $\mathrm{x} \equiv \mathrm{z}_{1}(\mathrm{a} \alpha), \quad \mathrm{z}_{1} \equiv \mathrm{z}_{2}(\mathrm{~b} \alpha), \quad$ and $\mathrm{z}_{1} \equiv \mathrm{y}(\mathrm{a} \alpha)$,
(1.2) Projective space [1,P.202]: If A be a set and L be a collection of subset of A.
(A, L) is called Projective space iff the following properties hold:
(i) Every $1 \square \mathrm{~L}$ has at least two elements.
(ii) For any two distinct p and $\mathrm{q} \in A$ there is exactly one $1 \in L$ satisfying p and $\mathrm{q} \in L$.
(iii) For $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{x}, \mathrm{y} \in A$ and $\mathrm{l}_{1}, \mathrm{l}_{2} \in L_{\text {satisfying } \mathrm{p}, \mathrm{q}, \mathrm{x}} \in 1_{1}$ and $\mathrm{q}, \mathrm{r}, \mathrm{y} \in 1_{2}$. there exist $\mathrm{z} \square \mathrm{A}$ and $\mathrm{l}_{3,} \mathrm{l}_{4} \in L_{\text {satisfying } \mathrm{p}, \mathrm{r}, \mathrm{z}} \in \mathrm{l}_{3}$ and $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{l}_{4}$.
(1.3) Linear subspace [1,P203]: A set $\mathrm{X} \subseteq A$ is called linear subspace
iff p and $\mathrm{q} \square \mathrm{X}$ imply that $\mathrm{p}+\mathrm{q} \subseteq X$. If X and Y are linear subspaces then define

$$
\mathrm{X}+\mathrm{Y}=\mathrm{U}(\mathrm{x}+\mathrm{y} l \mathrm{x} \square \mathrm{X} \text { and } \mathrm{y} \square \mathrm{Y})
$$

2. Main Theorems:

Theorem (2.1) A Lattice L has a representation of type 2, then it is Distributive.
Proof: \quad Let L have a representation $\alpha: L \rightarrow \operatorname{part}(A)$ of type 2 , and $a, b, c \in L, a \geq c$.

Since, in any lattice $((a \wedge b) \vee c \leq(a \vee c) \wedge(b \vee c)$.
we have to prove

$$
\begin{aligned}
& (a \wedge b) \vee c \geq(a \vee c) \wedge(b \vee c) . \text { so let } \mathrm{x}, \mathrm{y} \in A . \text { and } \\
& \text { let } \mathrm{x} \equiv y((a \wedge(b \vee c)) \alpha), \text { that is } \\
& x \equiv y(a \alpha) \text { and } x \equiv y((b \vee c) \alpha .
\end{aligned}
$$

As α is a type 2 representation there exist z_{1} and z_{2} such that

$$
x \equiv z_{1}(c \alpha) \cdot z_{1} \equiv z_{2}(b \alpha) \text { And } z_{2} \equiv y(c \alpha)
$$

Since $c \leq a$,we obtain that that $\mathrm{z}_{1} \equiv \mathrm{x}(a \alpha), \mathrm{x} \equiv \mathrm{y}(a \alpha)$ and $\mathrm{y} \equiv \mathrm{z}_{2}(a \alpha)$;
thus $\mathrm{Z}_{1} \equiv \mathrm{z}_{2}(a \alpha)$
Also $\mathrm{z}_{1} \equiv \mathrm{z}_{2}(b \alpha)$,hence $\mathrm{z}_{1} \equiv \mathrm{z}_{2}((a \wedge b) \alpha)$ and $\quad x \equiv y(a \alpha)$

Hence $\mathrm{x} \equiv y(((a \wedge b) \vee(a \wedge c)) \alpha)$, implying $(a \wedge b) \vee c \geq(a \vee c) \wedge(b \vee c)$.
Theorem (2.2): The linear subspaces of a projective space form a Distributive geometric
Lattice.
Proof: Since the intersection of any number of linear subspaces is a linear subspace again, we have a closure space ($A,-$). For $X \subseteq A$, the closure x can be described as follows:

$$
\text { set } X o=X, X i=X+X, \ldots, X n=X n-l+X n-l, \ldots ;
$$

then $\bar{X}=\bigcup\left(X_{i} \quad i=0,1,2, \ldots ..\right)$
It follows immediately, that ($\boldsymbol{A},-$) is an algebraic closure space and so the linear subspaces form an algebraic lattice and for the linear subspaces X and Y,

$$
X \vee Y=\overline{X \cup Y}
$$

If X, Y, and Z are linear subspaces and $\mathrm{Z} \subseteq X$ then
$(X \wedge Y) \vee(X \wedge Z) \subseteq X \wedge(Y \vee Z)$.

Now let $\mathrm{p} \in X \wedge(Y \vee Z)$, i.e. $p \in X$ and $\mathrm{p} \in Y \vee Z$ Since $p \in Y \vee Z=Y+Z$, there exist $\mathrm{p}_{\mathrm{y}} \in Y$ and $\mathrm{p}_{\mathrm{z}} \in Z$ such that $\mathrm{p} \in \mathrm{p}_{\mathrm{y}}+\mathrm{p}_{\mathrm{z} .}$ from $\mathrm{Z} \subseteq X$,it is clear that p and $\mathrm{p}_{\mathrm{z}} \in \mathrm{X}$, if $\mathrm{p}=\mathrm{p}_{\mathrm{z}}$, then $\mathrm{p} \in z$ then so $p \in(x \wedge y) \vee(x \vee z)$.if $\mathrm{p} \neq \mathrm{p}_{\mathrm{z}}$, then $\mathrm{p}_{\mathrm{y}} \in p+\mathrm{p}_{\mathrm{z}} \subseteq X$.
thus $\mathrm{p}_{\mathrm{y}} \in X \wedge Y$ and $\mathrm{p}_{\mathrm{z}} \in(X \wedge Z)$ thus given lattice is distributive.

References:

1. G.Birkhoff,.Lattice theory, $2^{\text {nd }}$ ed.,newyork 1948.
2. R. Freese, G. Gr"atzer, and E. T. Schmidt, On complete congruence . . lattices of complete modular lattices, International J. of Algebra and Computation 1 (1991), pp. 147-160.
3. G.Gratzer,Lattice theory.First concepts and distributive lattices.(W.H.Freeman and . Company San Francisco,1971).
4. G. Gratzer and E. T. Schmidt, Algebraic lattices as congruence lattices: The m-complete case, The Borkhoff meeting (1991, Darmstadt)
