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Abstract

A class of mixed boundary value problems (BVPs) arising in the study of fluid
flow involving three layers of fluids in a channel associated with small undula-
tion on the bottom, is examined for the solution using two-dimensional linearized
theory. Here it is assumed that the uppermost fluid is free to the atmosphere.
Using the perturbation analysis in conjunction with the Fourier transform tech-
nique, the velocity potentials and the elevations at each fluid layer are obtained
in terms of first-order of a small undulation parameter h introduced in the de-
scription of the bottom topography. The special case of a patch of sinusoidal
ripples on the bed is handled in detail and the numerical results of these physical
quantities are demonstrated graphically.
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1 Introduction

The problem of free surface fluid flow over submerged obstacles have created
varieties of challenges to model the situations in engineering, atmospheric and
oceanographic sciences. Such problems were considered for their complete so-
lution by Dias and Vanden-Broeck [1, 2], Forbes [3], Forbes and Schwartz [4],
Martha and Bora [5], Martha et.al. [6], Shen et.al. [7], Vanden-Broeck [8], and
many others. The problem involving two layers of fluids where the fluid in each
layer is inviscid and incompressible, were handled by Belward and Forbes [9],
Dias and Vanden-Broeck [10, 11], Chakrabarti and Martha [12] assuming the
uppermost fluid layer is a rigid lid.

In this paper, we consider the flow problem involving three layers of fluids
of different constant densities in a channel associated with small undulation on
the bottom where the uppermost fluid layer is free to atmosphere. The solution
of this problem is obtained by employing perturbation analysis in conjunction
with the Fourier transform technique. Analytical expressions of the elevation
of the interfaces are derived within the framework of two-dimensional linearized
theory. One special case for the bottom profile is considered to workout the
expressions in detail. The numerical results of these physical quantities are
presented graphically.

2 Description of the problem

We consider a system involving three layers of fluids flowing over bottom topog-
raphy having a small undulation in a channel. We assume that the fluid in each
layer is inviscid, incompressible and have constant but different densities. The
flow in each layer is two dimensional, irrotational with the far upstream velocity
uniform. The profile of the bottom topography is given by y = B(x) where the
x-axis is chosen to be along the bottom of the channel and y-axis is chosen in
the vertically upward direction. The upper fluid layer is free to atmosphere. We
let subscript 1 refer to quantities related in the upper layer, subscript 2 refer
to quantities in the middle layer and subscript 3 refer to quantities in the lower
layer. We then denote the densities by ρj , velocities by qj , pressures by pj ,
upstream depth by Hj and upstream horizontal velocity by cj in each layer at
any point (xj , yj), j = 1, 2, 3. The interface between layers 1 and 2 is denoted
by y = Q(x) and the interface between layers 2 and 3 is denoted by y = S(x),
the free surface is represented by y = P (x). Here these two interfaces y = Q(x)
and y = S(x) are unknown at the outset, to be determined.

Let φj , (j = 1, 2, 3) be the velocity potential in layer j. So ~qj = (uj , vj) =
(φj,x, φj,y) where φj,x, φj,y denote the partial derivatives of φj with respect to
x and y respectively. In the following sections φj,xx, φj,yy denote the second
order partial derivatives of φj with respect to x and y.
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The above variables are non-dimensionalised using H3 as the length scale
and c3 as the velocity scale. So the lower layer has an upstream uniform speed
of 1 and upstream uniform height of 1. The dimensionless quantities which
represent the properties of the flow,

λ1 =
H1

H3
, λ2 =

H2

H3
(ratio of upstream depths of fluids);

D1 =
ρ1
ρ2
, D2 =

ρ2
ρ3
, (the ratio of densities);

γ1 =
c1
c3
, γ2 =

c2
c3

(the ratio of upstream speeds);

F3 =
c3√
gH3

(Froude number in the lower layer)

and the two dimensionless parameters which describe the properties of the ob-
stacle, h the obstacle height and L the obstacle half length. The following work
proceeds purely with non-dimensionalised variables.

3 Mathematical Formulation

We assume the propagation of stationary waves with respect to the bottom
profile, so that the partial derivatives with respect to time can be taken equal
to zero. Then within each layer, the velocity potential φj , (j = 1, 2, 3) satisfy
the Laplace’s equation:

∇2φj = 0. (1)

The conditions on the free surface are given by

φ1,n = 0,
1
2F

2
3 (q21 − γ21) + P (x) = 1 + λ1 + λ2,

}
on y = P (x), (2)

since there is no fluid exchange at the interfaces, the conditions at the interfaces
are:

φj,n = 0, on y = Q(x), j = 1, 2, (3)

φj,n = 0, on y = S(x), j = 2, 3, (4)

and the condition at the bottom is:

φ3,n = 0, on y = B(x). (5)

Here, in the above equations, ∂/∂n means the normal derivative at a point (x, y)
at the respective surfaces.
At the interfaces, continuity of pressure, coupled with Bernoulli equation gives
the matching condition:

F 2
3

2
(q22 −D1q

2
1) + (1−D1)Q(x) =

3
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F 2
3

2
(γ22 −D1γ

2
1) + (1 + λ2)(1−D1) on y = Q(x), (6)

1

2
F 2
3 (q23 −D2q

2
2) + (1−D2)S(x) =

1

2
F 2
3 (1−D2γ

2
2) + (1−D2) on y = S(x). (7)

The upstream conditions are

−→q1 → γ1
−→
i , −→q2 → γ2

−→
i , −→q3 →

−→
i , P (x)→ 1 + λ1 + λ2,

Q(x)→ 1 + λ2, S(x)→ 1 as x→ −∞.

In the next section, the solutions of the BVPs involving equations (1)-(7) are
determined by the help of perturbation analysis with Fourier transform tech-
nique.

4 Method of Solution

Here, we assume that the bottom profile is given by y = B(x) = hf(x) (say),
where h is the height of the bottom profile, a dimensionless small quantity. We
then express the velocity potentials, the upper surface and the interfaces as the
regular perturbations:

φ1(x, y) = γ1x+ hφ11(x, y) +O(h2), (8)

φ2(x, y) = γ2x+ hφ21(x, y) +O(h2), (9)

φ3(x, y) = x+ hφ31(x, y) +O(h2), (10)

P (x) = 1 + λ2 + λ1 + hP1(x) +O(h2), (11)

Q(x) = 1 + λ2 + hQ1(x) +O(h2), (12)

S(x) = 1 + hS1(x) +O(h2). (13)

Substituting these equations (8)-(13) in the equations (1)-(7), we get (up to
order h):

∇2(φ11, φ21, φ31) = 0, (within each layer)
φ11,y = γ1P

′
1(x), on y = 1 + λ1 + λ2

φ11,y = γ1Q
′
1(x), on y = 1 + λ2

φ21,y = γ2Q
′
1(x), on y = 1 + λ2

φ21,y = γ2S
′
1(x), on y = 1

φ31,y = S′
1(x), on y = 1

φ31,y = f
′
(x), on y = 0

F 2
3 γ1φ11,x + P1(x) = 0 on y = 1 + λ1 + λ2
F 2
3

[
γ2φ21,x −D1γ1φ11,x

]
+(1−D1)Q1(x) = 0 on y = 1 + λ2

F 2
3

[
φ31,x −D2γ2φ21,x

]
+(1−D2)S1(x) = 0 on y = 1



(14)

To solve the boundary value problems involving relation (14), we now assume
that the first order potentials φj1(x, y), j = 1, 2, 3 and the bottom profile f(x)
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are such that the Fourier transforms of φj1(x, y) and f(x) exist, and are defined
as follows:

φ̂j1(k, y) =
2

π

∫ ∞

0

φj1(x, y) sin(kx)dx, (15)

with the inverse transform

φj1(x, y) =

∫ ∞

0

φ̂j1(k, y) sin(kx)dk, (16)

and

f(x) =

∫ ∞

0

M(k) cos(kx)dk, (17)

with the inverse transform

M(k) =
2

π

∫ ∞

0

f(x) cos(kx)dx. (18)

Now let’s define Q1(x) and S1(x) as

Q1(x) =

∫ ∞

0

b(k) cos(kx)dk, (19)

S1(x) =

∫ ∞

0

a(k) cos(kx)dk. (20)

The interfaces Q(x) and S(x) will be determined once the unknowns b(k) and
a(k) are determined.
Applying these transforms to the BVPs involving relation (14) and solving them,
we obtain

b(k) =
F 4
3 γ

2
2kM(k)E1(k) sinh(kλ2)

E2(k)
, (21)

a(k) =
F 2
3 kM(k)E3(k) sinh(kλ2)

E2(k)
, (22)

where

E1(k) = [F 2
3 γ

2
1k cosh(kλ1)− sinh(kλ1)]/k,

E2(k) = E3(k)
[
F 2
3 k cosh k sinh kλ2 +

{
γ22F

2
3 kD2 cosh kλ2

−(1−D2) sinh kλ2
}

sinh k
]
− γ22F 4

3 kD2 sinh k,

with

E3(k) =
[
{γ32F 2

3 k cosh kλ2 sinh kλ1

+γ21F
2
3 kD1 cosh kλ1 sinh kλ2

−(1−D1) sinh kλ1 sinh kλ2}E1(k)

−F 4
3 γ

4
1kD1 sinh(kλ2)

]
/{k sinh(kλ1)}.

Hence, Q1(x) and S1(x) can be determined in integral forms. The integral forms
of Q1(x) and S1(x) can be evaluated once the bottom profile f(x) is known. In
the next section, we consider a special form for f(x).

5
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5 Special form of the bottom profile

Considering the smooth bottom profile as given by

f(x) =


1
2

(
1 + cos πxL

)
, −L ≤ x ≤ L

0, otherwise,
(23)

and evaluating the integrals for Q1(x) and S1(x) at their singularities (the zeros
of E2(k) = 0), we get

Q1(x) =



−2π2F 4
3 γ

2
2

L2

2∑
j=0

E1(kj) sinh(kjλ2)

( π
2

L2 − k2j )E
′
2(kj)

× sin kjx sin kjL for x > L

0 for x < −L

and

S1(x) =



−2π2F 2
3

L2

2∑
j=0

E3(kj) sinh(kjλ2)

( π
2

L2 − k2j )E
′
2(kj)

× sin kjx sin kjL for x > L

0 for x < −L

where E′
2(k) denotes the first order derivative of E2(k) with respect to k.

Hence, we find that the forms of Q1(x) and S1(x) are oscillatory in nature,
representing superposable waves, downstream and no wave upstream.

6 Numerical Results

The interface profiles Q(x) and S(x) given by the relations (12)-(13) are com-
puted numerically and depicted in figures 1-2 respectively for different dimen-
sionless parameters F1 = 0.2, γ1 = 1, γ2 = 1, λ1 = 1, λ2 = 1, D1 = D2 = 0.7,
L = 0.5 and for different values of the obstacle height h.
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9 Numerical Results

The interface profiles Q(x) and S(x) given by the relations (12)-(13) are com-
puted numerically and depicted in figures 1-2 respectively for different dimen-
sionless parameters F1 = 0.2, γ1 = 1, γ2 = 1, λ1 = 1, λ2 = 1, D1 = D2 = 0.7,
L = 0.5 and for different values of the obstacle height h.

Figure 1: Wave profile of Q(x) for
F1 = 0.2; γ1, γ2 = 1; λ1, λ2 = 1;
D1, D2 = 0.7 and L = 0.5

Figure 2: Wave profile of S(x) for
F1 = 0.2, γ1, γ2 = 1; λ1, λ2 = 1;
D1, D2 = 0.7 and L = 0.5

From these figures it is clear that the forms of Q(x) and S(x) are oscillatory
in nature and the amplitude of the profile increases when the obstacle height
increases, which validate the theoretical results.

10 Summary and Conclusions

The fluid flow problems involving three layers of fluids in a channel having
small undulation on the bottom where the uppermost fluid layer is free to the
atmosphere, are investigated using two-dimensional linearized theory. Here the
interfaces which varies with x (not like rigid lids) are considered as the most
important practical part of the formulation. The effects of surface tension at
the surfaces of separation are neglected. Perturbation analysis, in conjunction
with the Fourier transform technique is used to derive the first order velocity
potentials and elevations at the interfaces. The main advantage of this Fourier
transform method is that we need to solve relatively easier ordinary differential
equation to find the Fourier transform of the velocity potentials. From the
derived results, it is clear that the amplitude of the profiles increase as the
height of the obstacle increases. It is also observed that, at the interfaces we
obtain superposable waves, downstream and no wave upstream and these waves
are oscillatory in nature. The results developed here are expected to be helpful
for a large class of multi-layered fluid flow problems in a channel with an uneven
bottom.
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