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Abstract 
 
 
A layer of compressible, rotating, elastico-viscous fluid of related density heated & 
soluted from below is considered in the presence of vertical magnetic field to include the 
effect of Hall currents. Dispersion relation governing the effect of visco-elasticity, salinity 
gradient, rotation, magnetic field and Hall currents is derived. For the case of stationary 
convection, the Rivlin-Erickson fluid behaves like an ordinary Newtonian fluid. The 
compressibility, stable solute gradient, rotation and magnetic field postpone the onset of 
thermo-solutal instability whereas Hall currents are found to hasten the onset of thermo-
solutal instability in the absence of rotation. In the presence of rotation, Hall currents 
postpone/hasten the onset of instability depending upon the value of wave numbers. 
Again, the dispersion relation is analyzed numerically & the results depicted graphically. 

 
Key Words:- Rivlin-Erickson elastico-viscous fluids, analogous solvent coefficient of expansion, 
resistivity, magnetic permeability, electron number density, transverse magnetic field etc. 
 
Introduction 
 

The case of over stability is discussed & sufficient conditions for non-existence of over stability are 
derived. For thermo-solutal convection, buoyancy forces can arise not only from density differences due 
to variation in temperature gradient, but also from those due to variation in solute concentration and this 
double diffusive phenomenon has been extensively studied in recent years due to its direct relevance in 
the field of chemical engineering, astrophysics, and oceanography. Veronis [20] studied the problem of 
thermo-haline convection in the layer of fluid heated from below and subjected to a stable salinity 
gradient. The physics is quite similar to Veronis thermo-haline configuration in the stellar case, in that 
helium acts like salt raising the density and in diffusing more slowly than heat. The heat and solute being 
two diffusing components, thermo-solutal (double-diffusive) convection is the general term dealing with 
such phenomenon. When the fluids are compressible, the equations governing the system become quite 
complicated. Spiegal and Veronis [18] have simplified the set of equations governing the flow of 
compressible fluids under the assumption that the depth of the fluid layer is much smaller than the scale 
height as defined by them, if motions of infinitesimal amplitude are considered. Sharma and Gupta [16] 
have considered the effect of suspended particles and Hall currents on the stability of compressible fluids 
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saturating a porous medium. Chandrasekhar [3] has given a detailed account of the theoretical and 
experimental results on the onset of thermal instability (B´enard convection) in an incompressible, 
viscous Newtonian fluid layer under varying assumptions of hydrodynamics and hydro-magnetics. In all 
these studies, fluid has been considered to be Newtonian.  
One such class of elastico-viscous fluids is Rivlin-Erickson fluid. Joshi [9] has discussed the visco-elastic 
Rivlin-Erickson incompressible fluid of related density under time dependent pressure gradient. Gupta 
[6] studied the stability of stratified Rivlin- Erickson fluid of related density in the presence of variable 
magnetic field and uniform rotation in a porous medium and found the stabilizing role of magnetic field 
for a certain wave number range as in the case of Newtonian fluids. The study of viscoelastic fluids has 
become of increasing importance due to their application in petroleum industry, food and chapter 
industry, and similar activities. Mathematical and graphically formulation :- Rivlin-Erickson fluids of 
related densities are characterized by the constitutive equations [13] 
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where S is Cauchy stress tensor, p is an arbitrary hydrostatic pressure, I is the unit tensor and si '  are 

polynomial functions of the traces of the various tensors occurring in the representation. 21, AA  are 

Rivlin-Erickson tensors and denote respectively the rate of strain and acceleration which are defined as 
TqgradqgradA )()(1   (2) 

TT qgradqgradagradagradA ))((2)()(2       (3) 

In the above equations a is the acceleration in substantial formulation, q is velocity vector. Neglecting the 

squares and products of 2A , we get Rivlin- Erickson fluid as 

2
132211 AAApIS         (4) 

where 321 ,,  are measurable material constants. They denote respectively the coefficient of ordinary 

viscosity, the coefficient of visco-elasticity, and the coefficient of cross-viscosity and are in general 
functions of temperature and material properties. The visco-elastic fluid when modelled by the Rivlin-
Erickson constitutive equations are termed second-order fluids. Second-order fluids are dilute polymeric 
solutions(e.g. poly-iso-butylene, methyl methacrylate in nbutylacetate, polyethylene oxide in water etc.). 

Rathna [12] has shown that fluid is visco-elastic if 3  is zero and non-Newtonian fluid with cross 

viscosity if 2  = 0. Heuristically, this approximation should hold in the case of second-order fluids. 

Recently, Halder [7] investigated the flow of blood through a constricted artery in the presence of an 
external transverse magnetic field using Adomian’s decomposition method. The expressions for two term 
approximation to the solution of stream function, axial velocity component and wall shear stress are 
obtained in this analysis. Sharma and Kumar [15] have studied the effect of rotation on thermal instability 
in Rivlin-Erickson elastico-viscous fluids. Recently, Sunil et. al. [19] have studied the effect of Hall 
currents on thermo-solutal instability of compressible Rivlin-Erickson fluids. Keeping in mind the 
conflicting tendencies of magnetic field and rotation while acting together and the growing importance of 
non-Newtonian fluids in modern technology, industry, chemical technology and dynamics of 
geophysical fluids; we are motivated to study the thermo-solutal instability of a compressible Rivlin-
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Erickson fluid in the presence of rotation and Hall currents. This problem to the best of our knowledge, 
has not been investigated yet. 

 

Formulation of the problem and perturbation equations: We have considered an infinite, horizontal, 
compressible electrically conducting Rivlin-Erickson fluid layer of thickness d which is heated and 

soluted from below(at z = 0) so that temperature and concentration at bottom is 0T and 0C  and at the 

upper surface (z = d) is dT  and dC  respectively. A uniform temperature gradient and concentration 

gradient, )( dzdT  and )( dzdC  maintained. The elastico-viscous fluid is acted on by gravity 

force ),0,0( gg  , a uniform vertical rotation ),0,0(  and a uniform vertical magnetic field 

),0,0( HH . In the present chapter we are considering all the assumptions that lead to Oberbeck-

Boussinesq system and assume that material constant 3  is zero (neglecting the cross viscosity effect) 

following Dunn and Rajagopal [4] in considering 2  > 0 to study the visco-elastic effect on the onset of 

convection. 

Let kkeNgCTp e  ,,,,,,,,,,,,,,  denote, respectively, the pressure, density, temperature, 

concentration, thermal coefficient of expansion, analogous solvent coefficient of expansion, gravitational 
acceleration, resistivity, magnetic permeability, electron number density, charge of an electron, kinematic 
viscosity, kinematic visco-elasticity, thermal diffusivity, solute diffusivity, and fluid velocity. The 
equations expressing conservation of momentum, mass, temperature, solute concentration, and equation 
of state of a Rivlin-Erickson fluid (Chandrasekhar [3]; Rivlin and Erickson [13]; Joseph [8]) are 
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In the present model, we have ignored the non-Newtonian effects of second order fluids on heat 
transportation in comparison to other terms in heat equation and assume that visco-elastic effects 
influence the heat transport only through velocity. From Maxwell’s equations, we have 
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d
stands for convective derivative. The state variables pressure, density, and 

temperature, are expressed in the form (Spiegal and Veronis [18])  
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mf stands for constant space distribution of f, 0f  is the variation in the absence of motion and 

),,,( tzyxf   is the fluctuation resulting from motion. For initial state, we have 
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Here pm and m stand for a constant space distribution of p and  . Linearized stability theory and normal 

mode analysis method is used to study infinitesimal perturbations and depth of fluid layer is assumed to 
be much less than the scale height as defined by Spiegal and Veronis [18].Let us consider a small 

perturbation on steady state solution and let ),,(,,, zyx hhhhp   and ),,(, zyx hhhh   denote, 

the perturbations in pressure, density, temperature, solute concentration, magnetic field, and velocity 

respectively. The change in density   is given by  

)'(   m   (14) 

Then the linearized hydromagnetic perturbation equations are 
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Dispersion relation: In normal mode analysis method, let us assume that perturbation quantities are of 
the form 

 

where yx kk ,  are the wavenumbers along x,y directions and resultant wave number is given by 
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where we have non-dimesionalized the various parameters as follows: 

 
We consider the case of two free boundaries which are perfect conductors of both heat and solute 
concentration. The case of two free boundaries is of little physical interest but is mathematically very 
important as it enables us to get analytical solutions and draw some qualitative conclusions. For the case 
of free boundaries the boundary conditions are (Chandrasekhar[3])  

,02  wDW  ,0Dz ,0 0 at z = 0 and 1, K = 0 on perfectly conduction boundaries.  

    (28) 

and zyx hhh ,,   are continuous. Using these boundary conditions, it can be shown that all the even order 

derivatives of W must vanish for z = 0 and 1. Therefore proper solution of W characterizing the lowest 

mode is zwW sin0     (29) 
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where 0w  is a constant. After eliminating  ,,, ZX  and K between Eqs. (22) − (27), we 

obtain

 
Equation (30) is the required dispersion relation including the effects of rotation, Hall currents, 
compressibility and solute gradient on the thermosolutal instability of a Rivlin-Erickson fluid. This 
equation reduces to the dispersion relation obtained by Sunil et.al. [19], in the absence of rotation. 
Conclusion:- We have investigated the effects of rotation, magnetic field and Hall currents on the 
stability of a compressible Rivlin-Erickson elastico-viscous fluid of related density heated and soluted 
from below. We derived the dispersion relation including the effects of rotation, Hall currents, 
compressibility and solute gradient on the thermosolutal instability of a Rivlin-Erickson fluid. The 
principal conclusions from the analysis of this chapter are as follows: 
(i) These analytical results are well supported numerically/graphically as can be seen from Fig. The 
reasons for stabilizing effects of magnetic field and rotation are accounted by Chandrasekhar [3] and for 
stable solute gradient by Veronis [20]. These are valid for second-order fluids as well. Gupta [5] observed 
the destabilizing effect of Hall currents for the case of Newtonian fluids. While studying the effect of one 
parameter graphically, on the stability of the system, values of other parameters are kept at the lowest 
level in the chosen range. This ensures a minimum possible interaction of the other parameters which 
may otherwise influence the stability of the system. 
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