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Abstract 
 

In this paper we studied rapid evaporation of a liquid at its superheat limit is one of the few 
aspects of boiling that is amenable to rigorous theoretical modeling. On the other hand the 
classical theory of bubble nucleation is reviewed and recent developments are presented that have 
been proposed for improving the treatment of the energy of forming bubble molecular 
dimensions. Application are discussed in which homogeneous nucleation is the most probable 
mechanism for initiating a phase transition, including thermal ink jet printing processes, rapid 
decompression of a two phase flow, and vapour explosion of liquids droplets.    
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1 Introduction  
 This paper deals the current understanding on modeling bubble nucleation within liquids, and a few applications 
under which it is likely to be important are studied. Bubbles form in a liquid by one of two mechanisms – from gases 
trapped in surface imperfections (heterogeneous nucleation) or by molecular activity in a liquid that is completely 
devoid of any pre-existing vapour phase (homogeneous nucleation). On the other hand, the former process prevalent if 
the liquid does not completely wet a surface, in the sense of its apparent contact angle being small as for some 
common fluids [1]. Bubble nucleation in this case involves the trapped gases being drawn out to the mouth of the 
cavities after which they detach from the surface as they continue growing [2]. The rising bubbles are the common 
occurrence of normal boiling. Several excellent reviews have been written on this process [3–5].  For homogeneous 
nucleation the bubbles do not exist a priori  [6]. Furthermore, the process by which the bubbles are assumed to form in 
this latter situation is studied in two important treatises [7–8], and reviews the essential ideas behind the classical 
model of the kinetics of homogeneous nucleation and presents recent developments for the energetics of the process.  
Three applications in which homogeneous nucleation can be realized  
(i) two-phase flows during rapid decompression within channels or tubes 
(ii) vapour explosions 
(iii) and ink-jet printing process  
2 Superheated liquids  
 Liquid-to-vapour phase transitions occur at temperatures which are bounded on the lower end by the saturation or 
equilibrium vapour temperature, TS(P0)  corresponding the ambient pressure P0 and at the upper end by the so called 
spinodal temperature or thermodynamics limit of super heat Tt(P0)  corresponding to the given pressure. Tt(P0)  is 
determined by the extremum principle of thermodynamics which asserts that the entropy of an isolates system is a 
maximum in a stable equilibrium state with respect to small variations of its natural variables. But for a single 
component liquid, Tt(P0) corresponds to ─ P/─ V =0 along an isotherm [9]. Superheated liquids refers to a liquid that is 
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at a temperature in the range TS(P0) < T (P0)< Tt(P0) or alternatively to a liquid which is under a pressure that is in the 
range Pt(T) < P0 < PS(T). Fig. (1) shows the these temperatures P–T and P–V projections of a phase diagram for a 
single component  liquid. But the thermodynamics state at which a phase transition is initiated depends on 
experimental conditions. If  a liquid in contact with a solid with rapidly heated (along path a→ c in Fig. (1)) at the rate 
of 106/s or higher, temperatures approaching Tt  can be sustained before a phase transition occurs [7]. Moreover, if the 
liquid is heated at a rate which is many orders of magnitude less, then the phase transition typically occurs at 
temperatures close to TS.  Bubbles are the physical entity that forecasts a bulk phase transition. When they are spherical 
and in static mechanical equilibrium with the surrounding liquid, then  
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Combining Eq.(1) with Clausius Clapeyron equation we obtain      
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Normal saturation states are conventionally based on equilibrium across a flat phase boundary, R→─. However, when 
a liquid is able to sustain some degree of superheat, any vapour present must be in the form of bubbles with   R<─. The 
particular equilibrium bubble radius depends on the type of process under consideration.  For normal boiling R is 
usually determined by the cavity size opening on a solid surface that traps vapour which is often of micron size 
dimensions. But for homogeneous nucleation, however, R is on the order of molecular dimensions so that the 
temperature above normal saturation a liquid can sustain is very large as shown by the tabulations of superheat limits 
liquids [10]. Similar ideas apply to the formation of liquid droplets within vapours that are at a pressure such that 
P0>PS  a so called supersaturated vapour [11], though that situation is not of direct interest to this review.   
3 Modeling of kinetics of the bubble nucleation process   
 The basic problem in nucleation theory is to predict the net rate of forming vapour nuclei-the nucleation rate- which 
is in equilibrium with the surrounding liquid. In addition the classical view of this problem [7-8][12-15]is that nuclei 
grow or decay isothermally in a unimolecular  steady state process wherein molecule evaporates or condenses on the 
bubble surfaces. The process is visualized by drawing an analogy to the chemical reaction:  
 

( )311 +=+ nn EEE  

Where n = 1, 2,……G. EG is some arbitrarily large nucleus containing G molecules and E1denotes a single molecule. 
Eq.(3) such applies to every size nucleus containing n molecules. The last reaction in the set is irreversible to allow net 
conversion of molecules from the liquid to the vapour state: EG+E1 →EG+1 . Moreover the forward and reverse rate 
constants are Fn and Rn+1, respectively. Fn are not known a priori [16] is determined and Rn is given by the 
condensation rate of molecules on a surface area Sn of a bubble containing n molecules and can be expressed in terms 
of molecular collision frequency β as  
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Where for am ideal gas  
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And for full spherical bubble  

( )54 21 RS n =  

Here Sn depends on P and n through the ideal gas law, PV = nRT where V = 4/31 R3 
The rate of forming bubbles – the nucleation- rate Jfor the above reaction sequence [15]  
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Where fndenotes the number density of nuclei that contain n molecules and the rate J is the same for all the reactions in 
the steady state approximation. In other words, the specific form of fn is unknown. However, it is related to a 
constrained equilibrium distribution of nuclei, Nnin the superheated liquid by assuming a hypothetical situation where 
J = 0 in Eq. (6) so that we obtain fn→Nn  
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Combining Eqs.(6) and (7) we obtain   
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The unknown distributions in Eq. (8) are eliminated by summing Eq.(8) from n = 1 to n = G ─1 and assuming that 
fn→Nn as Nn→ 1 and fn→0 as N→G ( there is no large nuclei present in the steady state J = 0 population)  
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Katz and Weidersich [17] showed that the equilibrium state at saturation conditions wherein J = 0 can be used to relate 
Fn to Rn. The saturation state is actually the more appropriate state in which equilibrium should be considered. It is 
necessary that the device of summing in Eq. (8) lead to a cancellation of all terms except the first and the last and [17] 
which showed such a cancellation can occur for the case of condensation of liquid droplets. An extension of this idea 
to the formation of vapour bubbles within a superheated liquid is not straightforward because of the dependence of 
surface area of a bubble on both the number of molecules it contains and on the internal vapour pressure.  However, 
assuming that P Å PS, then Sn (P) Å Sn (PS) ≡ Sn . We write Nsn for the distribution of nuclei at saturation (fn→ Nsn) in 
Eq. (7) when J = 0 yields Fn = R n+1(Nsn+1/ Nsn)  
Where the Fn are assumed to be independent of pressure. Combining the results with Eq. (8) multiplying both sides by 

1−nγ where 
Sβ
βγ ≡ and summing, all terms cancel except the first and the last 
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which differs from Eq. (9) by the presence ofγ . However, the conceptual interpretation of the kinetic process is 
improved because the notion of a constrained equilibrium distribution of nuclei in a metastable fluid is now 
unnecessary in the development.  Hence returning Eq. (9) by treating n as a continuous rather than discrete variables 
the summation in Eq. (8) is replaced by an integral:  
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To evaluate the integral Fn and Nn must be known  
On the other hand, the distribution of nuclei in a hypothetical constrained equilibrium state can be determined by 
assuming that the liquid/ nuclei system is an ideal dilute solution of vapour bubbles and single molecules. On 
minimizing the energy of mixing such a solution it can be shown that  
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Where ∆Ω  represents the energy to form a nucleus containing n molecules.  Upon combining Eqs. (10) and (11) and 
integrating which gives   
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Where  
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The equilibrium condition for a bubble in the metastable liquid is that  
( )
dn

d ∆Ω
=0 at ∗= nn . Γ is a factor that 

accounts for the possibility that nuclei larger than the critical size may decay. If Γ < 1 , not all nuclei that reach the 
critical size will ultimately continue growing. In Eq. (12) the terms of temperature as  
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The quantities within the logarithm Eq. (14), such as, J have a minor influence on the nucleation temperature T so that 
Eq. (14) could also be written as the form  
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Which is often useful for correlation phase change data that are believed to be governed by homogeneous nucleation. 
Experiments have shown that 10<C<75 for a wide range of applications [18] and for a rapid isothermal decompression 
produces C Å 28.5 [19]; nucleation at the interface between two immiscible liquids such as might exist within a 
dispersion of droplets in a field liquid (i.e. an emulsion)  gives C Å 66 [20].   
4 Modeling the energy of forming a critical size nucleus   
 Classical electrodynamics of nucleation energetic  
 This approach assumes that bulk properties apply to the microscale of the nucleation process (dimensions of about 
10─8 cm) and the relevant thermodynamic potential which determines the energy of forming a bubble with internal 
vapour pressure P is the change of the availability [21] between a homogeneous liquid system and a heterogeneous 
bubble or liquid system at the same ambient temperature T and pressure P0 :    
 

( ) ( )160 SWPPV +−=∆Ω  

Where WS denotes the surface energy of the bubble nucleus and for a spherical bubble gives   
 WS Å41σ R2 
 (17)  
For small departures from equilibrium the bubble nucleus is assumed to be chemical equilibrium [22] and combining 
Eqs. (16) and (17) then combine to yield [23]  
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When R→0, or for a nucleus that contains a few molecules, Eq.(18a) will produce an inconsistent result since the 
meaning of the physical properties is lost.  Considering n is treated as a continuous variable 
( )11 >>→±=∆ nanddnn  Eq.(7) can be transformed to  
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Thus, Fn<Rn when n < n∗ and such nuclei degenerates because of the propensity for molecular condensation over 
evaporation. When n > n∗ nuclei will continue to grow. From Eq. (18a) we observe that ( ) dnd /∆Ω = 0 for the 
critical nucleus state where Eq.(1) is also applicable. Furthermore,  
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Where Eq. (18b) will be used to evaluate Γ in Eq.(13). On the other hand, from Eq. (18b) the energy of forming a 
nucleus is a maximum where ( ) dnd /∆Ω = 0 which signifies the critical nucleus or metastable state. Now combining 
Eqs.(16) and (1) with the ideal gas law gives the well known result [25]  
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This shows the explicit dependence on bulk properties. Three important limits of Eq.(19) are the saturation state, 

critical point and the spinodal. In the first limit ( ) _→∆Ω and J→ 0 from Eq.(12) while in the second limit ∗∆Ω = 

0 but since Γ → 0 (as σ  = 0 as T→ Tc in Eqs.(13) and (18b)) then J = 0 as well at the critical point. On the spinodal 

curve (which is just another thermodynamic state as far as Eq.(1) is concerned), ∗∆Ω _ 0.  
 Bubble nucleus as a collection of activated molecules     
 In this approach a 
nucleus is considered to be composed of activated molecules, 
where an activated molecules is one that has been separated from its z nearest neighbors (for a FCC structure z =12) of 
distance dm to a distance dc the mean distance between molecules and the surface energy of nucleus is no longer given 
by Eq.(16). The energy of such a molecule is εm z/2 where εm denotes the area under the intermolecular potential curve 
between dm and dc and Lennard –Jones fluid and Kwak ans Panton [25] the area to be   
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and ε0 Å 3/16 Ei γ/ds
6 , Ei, γ and ds represents the ionization potential, polarizability and the hard sphere diameter of 

the fluid, respectively. If the energy required [26] overcoming the force holding molecules at the surface of a spherical 
nucleus is ½ z εm and n2/3 is the number of surface molecules [27], then the surface energy is [25]  
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This replaces Eq. (17) of the capillarity approximation. Substituting Eq. (20) into Eq. (16);  
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Where now the cluster or bubble volume is V Å nVm and for the critical nucleus state ( ) dnd /∆Ω = 0 so that Eq.(21) 
transform to  
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0 PPτ is the tensile strength of the liquid and combining Eqs. (21) and (22) gives  
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It is determined by solving Eq. (12) for a give nucleation rate. Accurate values of J are not needed to determine the 
thermodynamic state for a critical nucleus because of the logarithmic dependence of  

∗∆Ω  on  J in Eq. (12).  Fig.(2) shows that how τ  varies with nucleation rate for water at 283_K using Eqs.(12), (13), 
(22) and (23).  The calculations are extended to J = 1012 nuclei-cm3-s-1 that has been conjectured by Lienhard and 
Karimi [28]. The results show that  τ  increases monotonically as J increases and also shown is a measurement of the 
tensile strength of water from Briggs [29].  Since the nucleation rate is not known priori for the experimental 
conditions of this measurement ─ it must be estimated independently.   
 Density functional theory      
This approach is the proof that there exists a grand potential (given the symbol Ω) which is a functional whose 
minimum gives the equilibrium density profile, ρ (r) within a metastable heterogeneous bubble/gas system Evans [30]. 
In addition, a functional is a quantity that takes on a specific numerical value of a function (ρ) on which it depends and 
is represented by Ω[ρ].   
The difference in this potential between a system that contains a bubble and one that does not at the same far-field 
thermodynamic state (T, P0) is the energy of forming the critical size bubble [20, 31]  

[ ] [ ] ( )250ρρ Ω−Ω=∗∆Ω  

Where 0ρ represents the equilibrium density of the uniform far-field fluid and r denotes the bubble centre, Ω[ρ] 

denotes the Legendre transform of the internal energy and U [T, µ ], Callen [32]  
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F[ρ] is evaluated by assuming it to be the sum of a hard-sphere repulsive term and an attractive tail w2  
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Where fh denoted Helmholtz free energy per unit volume (fh = Fh/V) of a uniform hard sphere fluid the Yukawa form 
for w2 
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Where α denotes the integrated strength of the potential and λ (m-1) is the range parameter and α is chosen to match 
phase equilibrium data λ being a free parameter to describe the effect of density gradients on the nucleation rate and 
combining Eqs.(25)-(27) gives  
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[ ]0ρΩ  is determined from Eq.(30) by applying it to a fluid of uniform density 0ρ  (independent of r)  
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And VN 0ρ= since ρ0 is independent of r and the Euler equation for the Helmholtz free energy per unit volume 

[32] applied to a hard sphere fluid (subscript h) has been used  
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Where ( ) ( )00 ρρµ phandh  represents the hard sphere chemical potential and pressure, respectively both of 

which are obtained from a suitable equation of state [33] and evaluated at the density ρ0 , the equilibrium densities  
( ) 0ρρ andr  are determined from Eq. (29) for a homogeneous (liquid system / bubble) . For 

0/ 00 =Ω δρδρ and gives  
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From Eqs. (31), (33) and (34), ( ) VP00 −=Ω ρ . Saturation properties (liquid or vapour density)  

are obtained from Eq.(32) by equating chemical properties for liquid and gas and solving iteratively.  On the other 
hand, ( )rρ   is obtained by solving Eq. (35) iteratively. The solution is not trivial because Eq. (35) is an integral 

equation and solving Eqs.(34)-(36) Oxtoby and Evans [21] and Zeng and Oxtoby [34] and a typical result for ( )rρ  is 

shown in Fig.(3) for µ∆ = −kTc  and T / Tc = 0.6. Now, for this calculation λ = 1 was used. Because the computed gas 
density at the centre of the bubble is twice the saturated vapour density the error involved assuming that the vapour 
density in the bubble is saturated is evident.   
 In addition, with the equilibrium densities determined from Eqs. (34)–(35), ρ(r) and  ρ0 are introduced in 
Eqs.(31)-(32) to determine ∆Ωr Eq.(25):  
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Eq. (37) is the counterpart of Eqs.(19) and (24) to account for a density distribution across the bubble/liquid interface, 
and an interface that is not sharp. The variation of the barrier height to nucleation ∆Ω∗/kT from Eq. (37) with the 
nondimensional gas density, ρg /ds3 is shown in Fig.(4),  [22] for the gas → liquid transition  (nucleation of a liquid 
droplet in a supersurated vapour) for T / Tc = 0.6 and µ∆ = −0.52kTc to show how ∆Ω∗/kT  varies with 
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supersaturation. Though our interest is in the opposite problem, the results for nucleation of liquid droplets provides an 
analogous framework to understand how the barrier height depends on the depth of penetration into the metastable 
state, now represented by the supersaturation, S ≡ P*/Ps (S = 1 coexistence) rather than the superheat. Since the 
temperature is constant for this calculation, the ordinate is essentially the supersaturation because ρg /ds3 = S PS /(RT) 
ds3 and  
PS  is a function of T. But, two curves are drawn –one calculated from density functional theory and other from the 
classical model with surface tension obtained from Eq. (38)  
 [ ]( ) ( )38/ ApV−Ω= ρσ  

For a planar interface using Eq.(30) for Ω(ρ), the bulk surface tension is not used in Eq.(19) as  ρg /ds3 increases, 

∆Ω∗/kT → 0 at the computed spinodal, .0=T

p
δρ
δ

Hence by contrast, ∆Ω∗ c1/kT _0 at the spinodal. Moreover, at low 

supersaturation the capillarity approximation works well but differs increasingly as the supersaturation increases.  
Discussion and future research direction   In this paper from the different aspects we achieve the following:  
(a) the capillarity approximation is most popular for predicting the onset of homogeneous nucleation in liquids and 
gives good results for many fluid sty stems.  
 
(b) it works for a wide range of pure and single component liquids when a suitable estimate of the nucleation rate 
can be made and thermophysical properties can be accurately predicted.  
     ( c)  a notable exception is water, future works should resolve this  issue  
      (d)  density functional theory has so far not been applied to bubble nucleation in liquids to the same extent that the 
capillarity approximation has, and future works should seek to do so.   
 
      (e)  the dynamic aspects of the phase change process at the superheat limit also appear to have received less 
attention and future work should strive to more clearly understand the dynamic aspects of a phase transition at the 
superheat limit.  
 
References    

[1]  Adamson, A.W.  1982 “Physical Chemistry,” of Surfaces 4th edition, pp 349-350, New York, John Wiley.  
  

[2] Lorenz, J. J., Mikie, B.B and Rohsenow, W.M “The effect of Surface Condition on Boiling Characetristics,” Proc.5th 
International heat Transfer Conference 4:35 (1974).  

  
[3] Cole, R. “Boiling Nucleation,” Adv. Heat Trans. 10:85 1974.   

 
[4] Van Stralen, S.J.D and Cole, R, 1979, “Boiling Phenomena,” Vol.(1)&(2) New York, Hemisphere.  
  
[5] Collier, J.G. 1981, “Convective Boiling and Condensation,” Second edition, Chapter 4, New York McGraw- Hills   
 
[6] Apfel, R.E., 1972, “The tensile Strength of Liquids,” Sci. American 227:58.   
 
[7] Skripov, V.P., 1974, “Superheated Liquids,” New York, John Wiley.   
 
[8] Debenedetti, P.G, 1996, “Metastable Liquids,” Princeton University Press, New Jersey  

 
[9] Modell, M and Reid. R.C., 1983, “Thermodynamics and Its Applications,” Chapter 9 Englehood Cliffs, Prentice Hall.  
 
[10] Avedisian, C.T., 1985, “The Homegeneous Nucleation Limits of Liquids,” J. Phys. Chem. Ref.data 14:695-720.   
[11] Pound, G.M., 1972, “Selected Values of  Critical  Supersaturation for Nucleation of Liquids a from the Vapour , J. 

Phys. Chem. Ref. Data 1: 119.  
 
[12] Volmer, M., 1939, “Kinetics of Phase Formation,” ATI No. 81935 (F-TS-7068-RE) from Clearinghouse for federal 

and Technical Information.  
 
[13] Frenkel, J., “Kinetic Theory of Liquids,”1946, Chapter 3 pp. 6-9, Oxford University Press, Oxford.  



The Modeling homogeneous bubble nucleation in liquids 

41 
 

 
[14] MacDonald, J.E., 1963, “Homogeneous Nucleation of Vapor Condensation II,” American Journal of Physics 31:31.  
 
[15] Springer, G.S., 1978, “Homogeneous Nucleation,” Adv. Heat Trans. 14: 281.   
 
[16] Reiss, H., 1977, “Adv. Coll. Interface. Sci,” 61:351.    
 
[17] Katz, J.L and Weidersich, H., 1977, “Nucleation Theory without Maxwell Demons,” J. Coll Interface Sci, 61:351. . 
 
[18] Apfel, R.E, 1971, “Vapour Nucleation at a Liquid-Liquid Interface   J. Chem. Phys. 54:62. 
 
[19] Alamgir, Md and Lienhard, J.H., 1981, “Correlation of Pressure Undershoot during Hot Water Depressurization,” J. 

Heat Trans. 103:52  
 
[20] Avedisian, C.T.,and Andres. R.P, 1978, “Bubble Nucleation within Superheated Liquid-Liquid Emulsion,” J. Coll. 

Interface. Sci 64:438.  
 
[21] Oxtoby, D.W and Evans, R, 1988, “Nonclassical Nucleation Theory for the Gas-Liquid Transition, J. Chem. Phys. 

89:7521-7530. 
 
[22] Keenan, J.H, 1941, “Thermodynamics, “Chapter 17, New York: John Wiley. 
 
[23] Pinnes, E.L and Mueller, W. K. 1979, “Homogeneous Vapour Nucleation and Superheat Limits of Liquid Mixtures, 

J.Heat Trans. 101:617-621.  
 
[24] Avedisian, C.T, 1986, “Bubble Growth within Superheated Liquid Droplets,” Encyclopedia in Fluid Mechanics, 

Chapter 8, Gulf Publishing Co.    
 
[25] Gibbs, J. W., 1961, “The Scientific papers of J. Willard Gibbs,” New York, Dover. 
 
[26] Kwak, H and Panton. R.L., 1985, “The Tensile Strength of Simple Liquids Predicted by a Model of Molecular 

Interactions,” J. Phys. D. Appl. Phys 18:647-659.  
 
[27] Feynman, R.P., 1972, “Statistical Mechanics,” pp.125-126, New York, Addison Wesley. 
 
[28] Apfel. R. E., 1970, “Vapour Cavity Formation in Liquids,” Technical Memorandum 62, Harvard University, 

Acoustics Research Laboratory, Cambridge Mass.  
 
[29] Lienhard, J.H and Karimi, A, 1981, “Homogeneous Nucleation and the Spinodal Line,” J. Heat.Trans. 103:61.  
 
[30]  Evans, R., 1979, “The Nature of the Liquid-Vapour Interface and Other Topics in the Statistical Mechanics of 

NonUniform, Classical Fluids, Adv. Phys. 28: 143-200.  
 
[31] Rasmussen, D.H, 1992, “Homogeneous Nucleation or Spinodal Decomposition,” AICh Annual Meeting Symposium 

on the Thermodynamics on Nucleation.  
 
 
[32] Callen, H.B., 1985, “Thermodynamics,” Second Edition p.148, New York: Wiley, 1985.  
 
[33] Tarazona, P., and Evans, R,. 1983, “Wetting Transition in Models of a Solid-Gas Interface, Mol.Phys. 48:799-831.  
 
[34] Zeng, X. C., and Oxtoby, D. W., 1991, “Gas-Liquid Nucleation in Lennard-Jones Fluids,” J.Chem.Phys. 94: 4472-

4478.  
 
   



A. K. Borah and P.Goswami 

42 
 

 
 
 
 
Caption to the Fig.(1): Pressure/temperature (a) and pressure/volume (b) projections of a phase diagram for a pure 
substance illustrating stable, metastable and unstable states.   

 
 
 

Caption to the Fig. (2): Predicted tensile strength, τ (atm) of water at 283_K for various nucleation rates (in powers 
of 10) applying the model of Kwak and Panton and dotted line indicates a tensile strength which is predicted by the 
model at a nucleation rate of approximately 107 nuclei/(cm3-s).     
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Caption to the Fig. (3): Predicted variation density (ρdS

3) with radial distance (r/dS) across the interface of a liquid 
droplet in a supersaturated vapour by solving Eq. (35) for ρ(r) using Yukawa potential for ∆µ= –0.52kTc and T/Tc  
  = 0.60 and Rclass represents the radius of the critical size liquid droplet from Eq. (1).  
 
 

 
 
 

Caption to the Fig.( 4): Variation of energy of a critical size nucleus 




∆Ωr   from Eq.( 37) with ρg/d

3   for ∆µ = – 

0.52kTC  and T/TC = 0.60. The classical variation is from Eq.(19) with surface tension calculated using the grand 
potential from Eq.(30).                               

 
 
 
 


