American Journal of Mathematics and Sciences Vol. 5, No.1, (January-December, 2016) Copyright © Mind Reader Publications ISSN No: 2250-3102 <u>www.journalshub.com</u>

HAUSDORFF EXTENSIONS OF SPACES IN INTUITIONISTIC FUZZY S* CENTRED SYSTEMS

D.Amsaveni d_amsaveni@rediffmail.com M.K. Uma and E.Roja Department of Mathematics Sri Sarada College for Women Salem 636016 Tamilnadu,India.

Abstract

In this paper, the concepts of maximal intuitionistic fuzzy S^* centred systems and Hausdorff extensions of spaces in intuitionistic fuzzy S^* centred system are studied as in [9] and their properties are discussed.

Key words

Intuitionistic fuzzy S^* structure space (S, S^*) , intuitionistic fuzzy S^* centred system, a maximal intuitionistic fuzzy S^* centred system, intuitionistic fuzzy S^*H -closed, intuitionistic fuzzy S^* compact, intuitionistic fuzzy S^* completely regular space, intuitionistic fuzzy S^* maximal compact extension $\beta(S)$.

1.Introduction

After the introduction of the concept of fuzzy sets by Zadeh [13], several researches were conducted on the generalizations of the notion of fuzzy set. The concept of "Intuitionistic fuzzy sets" was first published by Atanassov [1] and many works by the same author and his colleagues appeared in the literature [2-4]. Later this concept was generalized to "Intuitionistic L-fuzzy sets" by Atanassov and stoeva [5]. An introduction to intuitionistic fuzzy topological space was introduced by Dogan Coker [6]. Fuzzy continuity in intuitionistic fuzzy topological spaces was introduced by Gurcay. H, Coker, D., and Haydar, Es. A., [8]. The method of centered system in the theory of topological spaces was introduced by Iliadis. S, Fomin.S [9], in order to study, as far as possible from one point of view, a number of problems in the theory of extension of topological spaces, like compactness and H-closure, as well as a newer range of ideas concerned principally with the work of Gleason [7] and Ponomarev [10]. The concept of intuitionistic fuzzy compactness was found in [6] and intuitionistic fuzzy Hausdorff space was found in [6]. Uma, Roja and Balasubramanian [12] extended the method of centred systems to fuzzy topological spaces. In this chapter, the concepts of maximal intuitionistic fuzzy S^* centred system, the realization of an arbitrary intuitionistic fuzzy S^* centred systems, intuitionistic fuzzy S^* centred systems, intuitionistic fuzzy S^* centered systems, intuitionistic fuzzy as the realization of a space of intuitionistic fuzzy S^* centered systems, intuitionistic fuzzy as the space of intuitionistic fuzzy intuitionistic fuzzy fuzzy

S * Hausdorff extensions of types σ and τ , maximality of intuitionistic fuzzy S * spaces $\sigma(S)$ and $\tau(S)$ and classes of intuitionistic fuzzy S * Hausdorff extensions of S are studied.

2.Preliminaries

Definition 2.1[3] Let X be a non empty fixed set. An intuitionistic fuzzy set (*IFS* for short) A is an object having the form $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}$ where the functions $\mu_A : X \to I$ and $\gamma_A : X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non membership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$.

Remark 2.1[6] For the sake of simplicity, we shall use the symbol $A = \langle x, \mu_A, \gamma_A \rangle$.

Definition 2.2[6] Let X be a non empty set and let $\{A_i : i \in J\}$ be an arbitrary family of *IFSs* in X. Then (a) $\bigcap A_i = \{ \langle x, \land \mu_{A_i}(x), \lor \gamma_{A_i}(x) \rangle : x \in X \};$ (b) $\bigcup A_i = \{ \langle x, \lor \mu_{A_i}(x), \land \gamma_{A_i}(x) \rangle : x \in X \}.$

Definition 2.3[6] Let X be a non empty fixed set. Then, $0_{\sim} = \{ \langle x, 0, 1 \rangle : x \in X \}$ and $1_{\sim} = \{ \langle x, 1, 0 \rangle : x \in X \}$.

Definition 2.4[6] Let X and Y be two non empty fixed sets and $f: X \to Y$ be a function. Then

(a) If $B = \left\{ \left\langle y, \mu_B(y), \gamma_B(y) \right\rangle : y \in Y \right\}$ is an *IFS* in *Y*, then the pre image of *B* under *f*, denoted by $f^{-1}(B)$, is the *IFS* in *X* defined by $f^{-1}(B) = \left\{ \left\langle x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) \right\rangle : x \in X \right\}$.

(b) If $A = \{ \langle x, \lambda_A(x), v_A(x) \rangle : x \in X \}$ is an *IFS* in X, then the image of A under f, denoted by f(A), is the *IFS* in Y defined by

$$\begin{split} f(A) &= \left\{ \left\langle y, f(\lambda_A)(y), (1 - f(1 - \nu_A))(y) \right\rangle : y \in Y \right\} & \text{where,} \\ f(\lambda_A)(y) &= \left\{ \begin{array}{ll} \sup_{x \in f^{-1}(y)} \lambda_A(x) & \text{if} \quad f^{-1}(y) \neq 0 \\ 0, & \text{otherwise,} \end{array} \right. \\ (1 - f(1 - \nu_A))(y) &= \left\{ \begin{array}{ll} \inf_{x \in f^{-1}(y)} \nu_A(x) & \text{if} \quad f^{-1}(y) \neq 0 \\ 1, & \text{otherwise.} \end{array} \right. \end{split}$$

for the *IFS* $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}.$

Definition 2.5[6] Let X be a non empty set. An intuitionistic fuzzy topology (*IFT* for short) on a non empty set X is a family τ of intuitionistic fuzzy sets (*IFSs* for short) in X satisfying the following axioms: (T₁) $0_{\sim}, 1_{\sim} \in \tau$, (T₂) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$, (T₃) $\bigcup_{i=1}^{n} G_i \in \tau$ for any arbitrary family $\{G_i : i \in J\}$. $\subseteq \tau$

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (*IFTS* for short) and any *IFS* in τ is known as an intuitionistic fuzzy open set (*IFOS* for short) in X.

Definition 2.6[6] Let X be a non empty set. The complement \overline{A} of an *IFOS* A in an *IFTS* (X, τ) is called an intuitionistic fuzzy closed set (*IFCS* for short) in X.

Definition 2.7[6] Let (X, τ) be an *IFTS* and $A = \langle x, \mu_A, \gamma_A \rangle$ be an *IFS* in X. Then the fuzzy interior and fuzzy closure of A are defined by

 $cl(A) = \bigcap \{ K : K \text{ is an } IFCS \text{ in } X \text{ and } A \subseteq K \},\$

int(A) = $\bigcup \{ G : G \text{ is an } IFOS \text{ in } X \text{ and } G \subseteq A \}.$

Remark 2.2[6] Let (X, τ) be an *IFTS*. cl(A) is an *IFCS* and int(A) is an *IFOS* in X, and (a) A is an *IFCS* in X iff cl(A) = A; (b) A is an *IFOS* in X iff int(A) = A.

Proposition 2.1[6] Let (X, τ) be an *IFTS*. For any *IFS* A in (X, τ) , we have

(a) $cl(\overline{A}) = \overline{int(A)}$, (b) $int(\overline{A}) = \overline{cl(A)}$.

Definition 2.8[6] Let (X, τ) and (Y, ϕ) be two *IFTSs* and let $f : X \to Y$ be a function. Then f is said to be fuzzy continuous iff the pre image of each *IFS* in ϕ is an *IFS* in τ .

Definition 2.9[6] Let (X, τ) and (Y, ϕ) be two *IFTSs* and let $f : X \to Y$ be a function. Then f is said to be fuzzy open(resp.closed) iff the image of each *IFS* in τ (resp.(1- τ)) is an *IFS* in ϕ (resp.(1- ϕ)).

Definition 2.10[11] A fuzzy topological space (X,T) is called fuzzy Hausdorff space iff for any two distinct fuzzy points $p, q \in X$, there exists $U, V \in T$ such that $U \cap V = 0$ with $p \in U$ and $q \in V$.

Definition 2.11[12] Let R be a fuzzy Hausdorff space. A system $p = \{U_{\alpha}\}$ of fuzzy open sets of R is called fuzzy centred if any finite collection of the sets of the system has a non empty intersection. The system p is called a maximal fuzzy centred system or a fuzzy end if it cannot be included in any larger fuzzy centred system of fuzzy open sets.

Definition 2.12[9] A Hausdorff space $\delta(R)$ is called an extension of a Hausdorff space R if R is contained in $\delta(R)$ as an everywhere dense subset. R is called H - closed if every extension coincides with R itself. An extension $\delta(R)$ is called H -closed if $\delta(R)$ is H - closed and compact if $\delta(R)$ is compact.

3.1 INTUITIONISTIC FUZZY S^* HAUSDORFF EXTENSIONS OF SPACES

In this section, three criteria for intuitionistic fuzzy *H*-closure are studied and interesting properties and characterizations are established.

Definition 3.1 Let X be a non empty set. Let S be a collection of all intuitionistic fuzzy sets of X. An intuitionistic fuzzy S^* structure on S is a collection S^* of subsets of S having the following properties

(a) ϕ and S are in S^* .

- (b) The union of the elements of any sub collection of S^* is in S^* .
- (c) The intersection of the elements of any finite sub collection of S^* is in S^* .

The collection S together with the structure S^* is called intuitionistic fuzzy S^* structure space. A subset U of S is an intuitionistic fuzzy S^* open set if $U \in S^*$. Its complement is said to be an intuitionistic fuzzy S^* closed set.

Definition 3.2 Let A be a member of S. An intuitionistic fuzzy S^* open set U in (S, S^*) is said to be an intuitionistic fuzzy S^* neighbourhood of A if $A \in G \subset U$ for some intuitionistic fuzzy S^* open set G in (S, S^*) .

Definition 3.3 Let (S, S^*) be an intuitionistic fuzzy S^* structure space and $A = \langle x, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy set in X. Then the intuitionistic fuzzy S^* closure and intuitionistic fuzzy S^* interior of A are respectively defined and denoted by

 $IF S^* cl(A) = \bigcap \{ K : K \text{ is an intuitionistic fuzzy } S^* \text{ closed sets in } S \text{ and } A \subseteq K \},$

IF S^* int(A) = $\bigcup \{ G : G \text{ is an intuitionistic fuzzy } S^* \text{ open sets in } S \text{ and } G \subseteq A \}$.

Definition 3.4 The ordered pair (S, S^*) is called an intuitionistic fuzzy S^* Hausdorff space if for each pair A_1 , A_2 of disjoint members of S, there exist disjoint intuitionistic fuzzy S^* open sets U_1 and U_2 such that $A_1 \subset U_1$ and $A_2 \subset U_2$.

Definition 3.5 Let (S_1, S_1^*) and (S_2, S_2^*) be any two intuitionistic fuzzy S^* structure spaces and let $f:(S_1, S_1^*) \rightarrow (S_2, S_2^*)$ be a function. Then f is said to be an intuitionistic fuzzy S^* continuous iff the pre image of each intuitionistic fuzzy S_2^* open set in (S_2, S_2^*) is an intuitionistic fuzzy S_1^* open set in (S_1, S_1^*) .

Definition 3.6 Let (S_1, S_1^*) and (S_2, S_2^*) be two intuitionistic fuzzy S^* structure spaces and let $f:(S_1, S_1^*) \rightarrow (S_2, S_2^*)$ be a bijection function. If both the function f and the inverse function $f^{-1}:(S_2, S_2^*) \rightarrow (S_1, S_1^*)$ are intuitionistic fuzzy S^* continuous, then f is called a intuitionistic fuzzy S^* homeomorphism.

Definition 3.7 Let f be a function from an intuitionistic fuzzy S^* structure space (S_1, S_1^*) into an intuitionistic fuzzy S^* structure space (S_2, S_2^*) with $f(A_1) = A_2$ where $A_1 \in (S_1, S_1^*)$ and $A_2 \in (S_2, S_2^*)$. Then f is called an intuitionistic fuzzy $S^* \theta$ -continuous at A_1 if for every neighbourhood O_{A_2} of A_2 there exists a neighbourhood O_{A_1} of A_1 such that $f(IFS^*cl(O_{A_1}) \subset IFS^*cl(O_{A_2})$. The function is called intuitionistic fuzzy $S^* \theta$ -continuous if it is intuitionistic fuzzy $S^* \theta$ -continuous at every member of S_1 . A function is called an intuitionistic fuzzy $S^* \theta$ -continuous in both directions.

Definition 3.8 Let (S, S^*) be an intuitionistic fuzzy S^* Hausdorff space. A system $p = \{U_{\alpha} : \alpha = 1, 2, 3, ..., n\}$ of intuitionistic fuzzy S^* open sets is called an intuitionistic fuzzy S^* centred system if any finite collection of the sets of the system has a non empty intersection. The intuitionistic fuzzy S^* centred system p is called a maximal

intuitionistic fuzzy S^* centred system or an intuitionistic fuzzy S^* end if it cannot be included in any larger intuitionistic fuzzy S^* centred system of intuitionistic fuzzy S^* open sets.

Note 3.1 Throughout this chapter let U_{α} : $\alpha = 1, 2, 3, ..., n$ be an intuitionistic fuzzy S^* open set in (S, S^*) .

Proposition 3.1 Let (S, S^*) be an intuitionistic fuzzy S^* Hausdorff space and $p = \{U_{\alpha}\}$ is an intuitionistic fuzzy S^* centred system in (S, S^*) . Then the following properties hold

a. If
$$U_i \in p$$
 $(i=1,2,...n)$, then $\bigcap_{i=1}^n U_i \in p$.

b. If $\phi \neq U \subseteq H$, $U \in p$ and H is intuitionistic fuzzy S^* open set, then $H \in p$.

c. If H is an intuitionistic fuzzy S^* open set, then $H \notin p$ iff there exists $U \in p$ such that $U \cap H = \phi$.

d. If $U_1 \cup U_2 = U_3 \in p$, U_1 and U_2 are intuitionistic fuzzy S^* open sets and $U_1 \cap U_2 = \phi$, then either $U_1 \in p$ or $U_2 \in p$.

e. If IFS * cl(U) = S, then $\phi \neq U \in p$ for any intuitionistic fuzzy S^* end p.

Definition 3.9 Let $\theta(S)$ denote the collection of all intuitionistic fuzzy S^* ends belonging to S. An intuitionistic fuzzy S^* topology is introduced into $\theta(S)$ in the following way. Let O_U be the set of all intuitionistic fuzzy S^* ends that contains U as an element, where U is an intuitionistic fuzzy S^* open set of S. Therefore O_U is an intuitionistic fuzzy S^* neighbourhood of each intuitionistic fuzzy S^* end contained in O_U .

Definition 3.10 A subset A of an intuitionistic fuzzy S^* structure space (S, S^*) is said to be an everywhere intuitionistic fuzzy S^* dense subset in (S, S^*) if $IFS^*cl(A) = S$.

A subset of an intuitionistic fuzzy S^* structure space (S, S^*) is said to be an nowhere intuitionistic fuzzy S^* dense subset in (S, S^*) if $X \setminus \overline{A}$ is everywhere intuitionistic fuzzy S^* dense subset.

Definition 3.11 Let (S, S^*) be an intuitionistic fuzzy S^* structure space and Y be an intuitionistic fuzzy S^* open set in (S, S^*) . Then the intuitionistic fuzzy S^* relative topology $T_Y = \{G \cap Y : G \in S^*\}$ is called the intuitionistic fuzzy S^* relative (or induced or subspace) topology on Y. The ordered pair (Y, T_Y) is called an intuitionistic fuzzy S^* subspace of the intuitionistic fuzzy S^* space (S, S^*) .

Definition 3.12 Let (S, S^*) be an intuitionistic fuzzy S^* structure space. Then

(a) If a family $\{U_{\alpha}: i \in \Lambda\}$ of intuitionistic fuzzy S^* open sets in (S, S^*) satisfies the condition $S = \bigcup \{U_{\alpha}: i \in \Lambda\}$, then it is called an intuitionistic fuzzy S^* open cover of S. A finite subfamily of the intuitionistic fuzzy S^* open cover $\{U_{\alpha}: i \in \Lambda\}$ of S, which is also an intuitionistic fuzzy S^* open cover of S, is called a finite subcover of $\{U_{\alpha}: i \in \Lambda\}$.

HAUSDORFF EXTENSIONS OF SPACES...

(b) An intuitionistic fuzzy S^* structure space (S, S^*) is called intuitionistic fuzzy S^* compact iff every intuitionistic fuzzy S^* open cover of S has a finite subcover.

Definition 3.13 An intuitionistic fuzzy S^* Hausdorff space $\delta(S)$ is called an extension of an intuitionistic fuzzy S^* Hausdorff space S if S is contained in $\delta(S)$ as an everywhere intuitionistic fuzzy S^* dense subset. S is called an intuitionistic fuzzy S^*H -closed if every extension coincides with S itself. An extension $\delta(S)$ is called an intuitionistic fuzzy S^*H -closed if $\delta(S)$ is an intuitionistic fuzzy S^*H -closed, and intuitionistic fuzzy S^* compact if $\delta(S)$ is an intuitionistic fuzzy S^* compact.

Definition 3.14 Let (S, S^*) be an intuitionistic fuzzy S^* structure space. A system \mathcal{B} of intuitionistic fuzzy S^* open sets of an intuitionistic fuzzy S^* structure space S is called an intuitionistic fuzzy S^* base(or basis) for (S, S^*) if each member of (S, S^*) is a union of members of \mathcal{B} . A member of \mathcal{B} is called an intuitionistic fuzzy S^* basic open set.

Definition 3.15 Let (S, S^*) be an intuitionistic fuzzy S^* structure space. A system of intuitionistic fuzzy S^* open sets of an intuitionistic fuzzy S^* structure space S is called an intuitionistic fuzzy S^* sub-base if it together with all possible finite intersections of members of the system forms a base of S.

Lemma 3.1 An intuitionistic fuzzy S^* structure space S is intuitionistic fuzzy S^*H -closed if and only if any intuitionistic fuzzy S^* centered system $\{U_{\alpha}\}$ of intuitionistic fuzzy S^* open sets of S satisfies the condition $\bigcap IFS^*cl(U_{\alpha}) \neq \phi$

Lemma 3.2 An intuitionistic fuzzy S^* structure space S is intuitionistic fuzzy S^*H -closed if and only if any maximal intuitionistic fuzzy S^* centered system $\{U_{\alpha}\}$ of intuitionistic fuzzy S^* open sets of S contains all the intuitionistic fuzzy S^* neighbourhoods of some member.

The proof of this lemma follows easily from Lemma 3.1.

Lemma 3.3 The intuitionistic fuzzy S^* structure space S is intuitionistic fuzzy $S^* H$ -closed if and only if from any intuitionistic fuzzy S^* cover $\{U_{\alpha}\}$ of S a finite subsystem U_i (i = 1, 2, 3, ..., n) may be chosen such that

$$\bigcup_{i=1}^{n} IFS \ ^{*}cl(U_{i}) = S$$

The proof of this lemma follows easily from Lemma 3.1.

4. THE REALIZATION OF AN ARBITRARY INTUITIONISTIC FUZZY S^* EXTENSION OF A SPACE OF INTUITIONISTIC FUZZY S^* CENTERED SYSTEMS.

In this section, intuitionistic fuzzy S^* extensions of types σ and τ , the intuitionistic fuzzy S^* structure space $\sigma(S)$, intuitionistic fuzzy S^* structure space $\tau(S)$, maximality of the intuitionistic fuzzy S^* structure spaces $\sigma(S)$ and $\tau(S)$ and classes of intuitionistic fuzzy S^* Hausdorff extensions of S are introduced. And some interesting properties are discussed.

Let $\{q\}$ be a collection of intuitionistic fuzzy S^* centered (not necessarily maximal) systems of intuitionistic fuzzy S^* open sets of S. An intuitionistic fuzzy S^* topology may be defined on this collection, similar to that introduced above in $\delta(S)$. For if U is an intuitionistic fuzzy S^* open set of S, let O_U denote the collection of all intuitionistic fuzzy S^* centered systems $q \in \{q\}$ containing U as an element. All sets of the form O_U form a subbase.

Let $\delta(S)$ be an arbitrary intuitionistic fuzzy S^* extension of S. Every member $A \in \delta(S)$ in particular, A may belong to S defines a certain intuitionistic fuzzy S^* centered system in S, namely $\left\{V_{\alpha}^A = S \cap U_{\alpha}^A\right\}$ where U_{α}^A runs through all neighbourhoods of A in $\delta(S)$.

Thus, every extension of an arbitrary intuitionistic fuzzy S^* Hausdorff space S can be realized as an intuitionistic fuzzy S^* structure space of centered systems of intuitionistic fuzzy S^* open sets of S with an appropriately chosen topology.

Let $\delta_{\sigma}(S)$ denote the intuitionistic fuzzy S^* structure space that is obtained by introducing an intuitionistic fuzzy S^* topology into a set of intuitionistic fuzzy S^* centered systems $\{V_{\alpha}^A\}$ by the method mentioned above.

Lemma 4.1 For any intuitionistic fuzzy S^* extension $\delta(S)$ the intuitionistic fuzzy S^* structure space $\delta_{\sigma}(S)$ is an intuitionistic fuzzy S^* extension of S and intuitionistic fuzzy $S^* \theta$ -homeomorphic to $\delta(S)$.

Definition 4.1

An intuitionistic fuzzy S^* extension $\delta(S)$ is of type σ if the function *i* (one-to-one correspondence between the members of $\delta(S)$ and $\delta_{\sigma}(S)$) is an intuitionistic fuzzy $S^* \theta$ -homeomorphism.

Defenition 4.2

An intuitionistic fuzzy S^* extension $\delta(S)$ is of type τ if the set $\delta(S) \setminus S$ is discrete in the intuitionistic fuzzy S^* relative topology.

Proposition 4.1

Every intuitionistic fuzzy S^* extension of S is an intuitionistic fuzzy S^* θ -homeomorphic to some extension of type σ of the same space.

The proof follows from the fact the intuitionistic fuzzy S^* extension $\delta_{\sigma}(S)$ in Lemma 4.1 is of type σ .

Now let $\delta(S)$ be any intuitionistic fuzzy S^* extension. Let $\delta_{\tau}(S)$ denote the intuitionistic fuzzy S^* structure space obtained as follows. The members of $\delta_{\tau}(S)$ are those of $\delta(S)$. The intuitionistic fuzzy S^* neighbourhoods of members $A \in S$ are same as in S, but for members $A \in \delta(S) \setminus S$, the intuitionistic fuzzy S^* neighbourhoods are obtained from those of A in $\delta(S)$ by rejecting the set $\delta(S) \setminus S \bigcup A$. Clearly $\delta_{\tau}(S)$ an intuitionistic fuzzy S^* Hausdorff space. **Definition 4.3** Let (S_1, S_1^*) and (S_2, S_2^*) be two intuitionistic fuzzy S^* structure spaces. An intuitionistic fuzzy S^* structure space (S_1, S_1^*) is said to be topologically embedded in another intuitionistic fuzzy S^* structure space (S_2, S_2^*) if (S_1, S_1^*) is an intuitionistic fuzzy S^* homeomorphism to an intuitionistic fuzzy S^* subspace of (S_2, S_2^*) .

Lemma 4.2 For any intuitionistic fuzzy S^* extension $\delta(S)$, the intuitionistic fuzzy S^* structure space $\delta_{\tau}(S)$ is an intuitionistic fuzzy S^* extension of S, intuitionistic fuzzy $S^* \theta$ -homeomorphic to $\delta(S)$ and of type τ .

Note 4.1 From Lemma 4.2 each intuitionistic fuzzy S^* extension $\delta(S)$ of S is associated with intuitionistic fuzzy S^* extensions $\delta_{\sigma}(S)$ and $\delta_{\tau}(S)$, of types σ and τ , respectively and intuitionistic fuzzy $S^* \theta$ -homeomorphic to each other and also intuitionistic fuzzy $S^* \theta$ -homeomorphic to the original intuitionistic fuzzy S^* extension $\delta(S)$.

Let \mathcal{G} be a intuitionistic fuzzy S^* base of intuitionistic fuzzy S^* open sets in an intuitionistic fuzzy S^* structure space S and $\sigma_{\mathcal{G}}(S)$, the intuitionistic fuzzy S^* structure space whose elements are, firstly, the members of S itself and secondly, all the maximal intuitionistic fuzzy S^* centred systems $\{U_{\alpha}\}$ consisting of intuitionistic fuzzy S^* open sets belonging to \mathcal{G} , none of which contains as a subsystem all the intuitionistic fuzzy S^* neighbourhoods of any intuitionistic fuzzy S^* open set of S belonging to \mathcal{G} (Clearly this condition is equivalent to the following: $\bigcap_{\alpha} IFS^* cl(U_{\alpha}) = \phi$).

An intuitionistic fuzzy S^* topology is defined in $\sigma_{\mathcal{G}}(S)$ as follows. If $U \in \mathcal{G}$, then O_U denotes the set of all $A \in U$ and all maximal intuitionistic fuzzy S^* centred system in $\sigma_{\mathcal{G}}(S)$ that contain U as an element. Since in $\sigma_{\mathcal{G}}(S)$ each member $A \in S$ can be replaced by the intuitionistic fuzzy S^* centred system of all its intuitionistic fuzzy S^* neighbourhoods belonging to \mathcal{G} (with the intuitionistic fuzzy S^* topologization: $\{U_{\alpha}\} \in O_U$ if $U \in \{U_{\alpha}\}$). It is clear that each $\sigma_{\mathcal{G}}(S)$ is an intuitionistic fuzzy S^* Hausdorff extension of type σ of the original intuitionistic fuzzy S^* structure space S.

The intuitionistic fuzzy S^* structure space $\sigma_{\varphi}(S)$ may also be obtained by the following equivalent method. An intuitionistic fuzzy S^* centred system $\{U_{\alpha}\}$ of intuitionistic fuzzy S^* open sets of \mathcal{G} is called an intuitionistic fuzzy S^* Hausdorff system if for every $B \in S$ not belonging to $U \in \{U_{\alpha}\}$ there exists a $U' \in \{U_{\alpha}\}$ such that $B \notin IFS^* cl(U')$. A maximal intuitionistic fuzzy S^* Hausdorff system (that is, one which cannot be extended while remaining an intuitionistic fuzzy S^* centred system and an intuitionistic fuzzy S^* Hausdorff space) is called an intuitionistic fuzzy S^* Hausdorff end. Then the set of all intuitionistic fuzzy S^* topology described in Section 4 is again $\sigma_{\varphi}(S)$. To establish this it is sufficient to note firstly that the set of all intuitionistic fuzzy S^* neighbourhoods of \mathcal{G} of an arbitrary fixed intuitionistic fuzzy S^* open set A

of an intuitionistic fuzzy S^* Hausdorff end, and secondly that every maximal intuitionistic fuzzy S^* centred system not containing all the intuitionistic fuzzy S^* neighbourhoods in \mathcal{G} of some member is automatically intuitionistic fuzzy S^* Hausdorff end. As the base it may be taken, in particular, the set of all intuitionistic fuzzy S^* open sets of S. An intuitionistic fuzzy S^* structure space $\sigma_{\mathcal{G}}(S)$ associated with this base will simply be denoted by $\sigma(S)$.

Proposition 4.2 An intuitionistic fuzzy S^* extension $\sigma(S)$ is an intuitionistic fuzzy $S^* H$ -closed extension of S. Note 4.2 Let \mathcal{G} be any intuitionistic fuzzy S^* base of S. If $U \in \mathcal{G}$ then, $S \setminus IFS^*cl(U) \in \mathcal{G}$. Then \mathcal{G} is called

intuitionistic fuzzy S^* algebraically closed.

Remark 4.1

If $\boldsymbol{\mathcal{G}}$ is an intuitionistic fuzzy S^* algebraically closed base of S, then $\sigma_{\boldsymbol{\mathcal{G}}}(S)$ is an intuitionistic fuzzy S^* *H*-closed extension of *S*.

The proof is essentially the same as that of Proposition 4.2.

Note 4.3 Each intuitionistic fuzzy S^* extension $\delta(S)$ is associated with intuitionistic fuzzy $S^* \theta$ -homeomorphic extension $\sigma_{\tau}(S)$ of type τ , the intuitionistic fuzzy S^* structure space $\delta_{\tau}(S)$ which is associated with $\sigma(S)$ is denoted by $\tau(S)$ and is called an intuitionistic fuzzy S^* Katetov extension of S.

Lemma 4.3 An intuitionistic fuzzy $S^* \theta$ -continuous image of an intuitionistic fuzzy $S^* H$ -closed space is an intuitionistic fuzzy $S^* H$ -closed.

Remark 4.2 The intuitionistic fuzzy S^* structure space $\tau(S)$ is an intuitionistic fuzzy $S^* H$ -closed extension of S. The proof follows from Proposition 4.2 and Lemma 4.3.

Note 4.4 An intuitionistic fuzzy S^* structure space $\tau(S)$ has the following maximal properties.

Proposition 4.3 If $\delta(S)$ is any (not necessarily intuitionistic fuzzy $S^* H$ -closed) intuitionistic fuzzy S^* extension of S, then there exists a subset $\tau_{\delta}(S) \subseteq \tau(S)$, containing S and an intuitionistic fuzzy S^* continuous function f_{δ} of this subset onto $\delta(S)$ such that $f_{\delta}(A) = A$, where $A \in S$. Here if $\delta(S)$ is an intuitionistic fuzzy $S^* H$ -closed extension, it may be assumed that $\tau_{\delta}(S) = \tau(S)$.

Remark 4.3.

 $\tau_{\delta\sigma}(S)$ denotes the intuitionistic fuzzy S^* structure space obtained from $\tau_{\delta}(S)$ by the procedure described in Section 4. It is easy to see that $\tau_{\delta\sigma}(S)$ is an intuitionistic fuzzy $S^* \theta$ - homeomorphic to a subset of the intuitionistic fuzzy S^* extension $\sigma(S)$. As $\tau_{\delta\sigma}(S)$ is an intuitionistic fuzzy $S^* \theta$ -homeomorphic to $\tau_{\delta}(S)$, Proposition 4.3 holds if $\tau(S)$ is replaced by $\sigma(S)$ and intuitionistic fuzzy S^* continuity by intuitionistic fuzzy $S^* \theta$ -continuity.

Remark 4.4 An intuitionistic fuzzy S^* structure space $\sigma(S)$ can be mapped intuitionistic fuzzy $S^* \theta$ -continuity onto any intuitionistic fuzzy $S^* H$ -closed extension of S in such a way that the members of S remain fixed.

Lemma 4.4 An intuitionistic fuzzy S^* open set $\tau_{\delta}(S)$ is the largest subset of $\tau(S)$ that can be continuously mapped onto $\delta(S)$ in such a way that the members of S remain fixed; in other words, if a set $\tau'_{\delta}(S)$ is continuously mapped onto $\delta(S)$ in such a way that the members of S remain fixed, then $\tau'_{\delta}(S) \subseteq \tau_{\delta}(S)$. Note 4.5 Thus, all intuitionistic fuzzy S^* extensions of S fall into classes, where $\delta(S)$ and $\delta'(S)$ are in the same class if and only if $\tau_{\delta}(S) = \tau_{\delta}'(S)$. All intuitionistic fuzzy S^* H -closed extensions belong to the same class, by Lemma 4.3 contains only intuitionistic fuzzy S^* H -closed extensions.

Lemma 4.5 If intuitionistic fuzzy S^* extensions $\delta(S)$ and $\gamma(S)$ are intuitionistic fuzzy $S^* \theta$ -homeomorphic, then they belong to the same class, that is $\tau_{\delta}(S) = \tau_{\gamma}(S)$.

Acknowledgement

The authors express their sincere thanks to the referees for their valuable comments regarding the improvement of the paper.

References

- 1. Atanassov.K, Intuitionstic fuzzy sets,in: V. Sgurev, Ed., VII ITKR's Session, Sofia (une 1983 Central Sci. and Techn. Library, Bulg. Academy of sciences, 1984).
- 2. K. Atanssov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- 3. K Atanassov, Review and new results on intuitionistic fuzzy sets, Preprint IM-MFAIS 1-88, Sofia, 1988.
- 4. K. Atanassov and S. Stoeva, Intuitionistic fuzzy sets, in: *Polish symp. On Internal & Fuzzy Mathematics, Poznan* (August 1983), 23-26.
- 5. K. Atanassov and S. Stoeva, Intuitionistic L-fuzzy sets, in : R. Trappl, Ed., *Cybernetics and system Research*, Vol. 2 (Elsevier, Amsterdam, 1984), 539-540.
- 6. D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88 (1997),81-89.
- 7. Gleason A. M, Projective topological spaces, Illinois J.Math., 2(1958), 482 487.
- 8. Gurcay, H., Coker, D., and Haydar, Es. A., On fuzzy continuity in intuitionistic fuzzy topological spaces, *The J. fuzzy mathematics*, 1997, 365-378.
- 9. Iliadis. S, Fomin. S, The method of centered system in the theory of topological spaces, UMN, 21 (1996), 47-66.
- 10. Ponomarev V.I, Paracompacta, Their projective spectra and continuous mappings, Mat.sb., 60(1963), 89-119.
- 11. Rekha Srivastava, Lal S.N. and Arun.K.Srivastava, Fuzzy Hausdorff topological spaces, J. Math. Anal. Appl., 81(1981), 497-506.
- 12. Uma M.K.,Roja.E and Balasubramanian.G, The method of centred systems in fuzzy topological spaces, The Journal of fuzzy mathematics, 15(4), 2007, 1-7.
- 13. L. A. Zadeh, Fuzzy sets, Inform and control, 8 (1965), 338-353.