American J. of Mathematics and Sciences Vol. 3, No -1 ,(January 2014) Copyright © Mind Reader Publications ISSN No: 2250-3102

A STUDY ON FUZZY LOCALLY G₈-Closed SETS

Dr. B.AMUDHAMBIGAI Assistant Professor of Mathematics Department of Mathematics Sri Sarada College for Women, Salem-16 TamilNadu, India. rbamudha@yahoo.co.in

A. KARTHIKA Sri Sarada College for Women, Salem-16 B. TamilNadu, India.

ABSTRACT

In this paper the concept of fuzzy locally G_{δ} -closed sets is introduced and its interrelations with other types of locally closed sets are studied with suitable counter examples. Equivalently the interrelations of fuzzy locally G_{δ} continuous functions with other types of fuzzy locally continuous functions are discussed with necessary counter examples.

Key words

fuzzy locally G_{δ} closed sets, fuzzy locally regular closed sets, and fuzzy locally G_{δ} continuous functions

2000 Mathematics Subject Classification : 54A40, 03E72.

INTRODUCTION AND PRELIMINARIES

The concept of fuzzy set was introduced by Zadeh [10] in his classical paper. The concept of fuzzy topological spaces was introduced and developed by Chang [6]. Fuzzy sets have applications in many fields such as information [8] and control [9]. The first step of locally closedness was done by Bourbaki [5]. Ganster and Reilly used locally closed sets in [7] to define Lc-continuity and Lc-connectedness. The concepts of r-fuzzy- G_{δ} - \tilde{g} -locally closed sets and fuzzy G_{δ} - \tilde{g} -locally continuous functions were studied by Amudhambigai, Uma and Roja [1]. In this paper the concept of fuzzy locally G_{δ} -closed sets is introduced and its interrelations with other types of locally closed sets are studied with suitable counter examples. Equivalently the interrelations of fuzzy locally G_{δ} continuous functions with other types of fuzzy locally continuous functions are discussed with necessary counter examples.

Definition 1.1 Let (X, T) be a fuzzy topological spaces. Any fuzzy set $\lambda \in I^X$ is called (i) a **fuzzy regular** closed set [2] of X if $\lambda = cl(int(\lambda))$, (ii) a **fuzzy regular open set** [2] of X if $\lambda = int (cl (\lambda))$, (iii) a **fuzzy F**_o

set [3] if $\lambda = \bigvee_{i=1}^{\infty} \lambda_i$, where $1 - \lambda_i \in T$, (iv) a fuzzy \mathbf{G}_{δ} set [3] if $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$, where $\lambda_i \in T$, (v) a fuzzy preclosed set [4] if $\lambda \ge \operatorname{cl}(\operatorname{int}(\lambda))$, (vi) a fuzzy α - closed set [4] if $\lambda \ge \operatorname{cl}(\operatorname{int}(\operatorname{cl}(\lambda)))$. 2.0N FUZZY LOCALLY \mathbf{G}_{δ} CLOSED SETS

Definition 2.1 Let (X, T) be a fuzzy topological space. Any $\lambda \in I^X$ is called a **fuzzy locally closed set** (briefly, FLcs) if $\lambda = \mu \land \gamma$, where μ is fuzzy open and γ is fuzzy closed. Its complement is said to be a **fuzzy locally open set**.

Definition 2.2 Let (X, T) be a fuzzy topological space. Any $\lambda \in I^X$ is called a **fuzzy locally regular closed set** (briefly, FLrcs) if $\lambda = \mu \land \gamma$, where μ is fuzzy open and γ is fuzzy regular closed. Its complement is said to be a **fuzzy locally regular open set**.

Proposition 2.1 Every fuzzy locally regular closed set is fuzzy locally closed.

Remark 2.1 The converse of the above Proposition 3.1 need not be true.

Example 2.1 Every fuzzy locally closed set need not be fuzzy locally regular closed. Let X={a, b} and let λ_1 , λ_2 , $\lambda_3 \in I^X$ be defined as follows: $\lambda_1(a) = 0.3$, $\lambda_1(b) = 0.2$; $\lambda_2(a) = 0.5$, $\lambda_2(b) = 0.8$; $\lambda_3(a) = 0.4$, $\lambda_3(b) = 0.7$. Define the fuzzy topology on X as T = { 0, 1, $\lambda_1, \lambda_2, \lambda_3$ }. Clearly, (X, T) is a fuzzy topological space. Then, for $\lambda_3 \in T$, $\lambda_3 \wedge 1 - \lambda_3 = (0.4, 0.3) = \lambda$ is fuzzy locally closed. But λ is not fuzzy regular closed and also λ is not a fuzzy locally regular closed set. Therefore, every fuzzy locally closed set need not be fuzzy locally regular closed.

Definition 2.3 Let (X,T) be a fuzzy topological space. Any $\lambda \in I^X$ is called a **fuzzy locally** G_{δ} closed set (briefly, FLG_{δ}cs) if $\lambda = \mu \land \gamma$, where μ is fuzzy G_{δ} and γ is fuzzy closed. Its complement is said to be a **fuzzy locally** F_{α} open set.

Proposition 2.2 Every fuzzy locally regular closed set is fuzzy locally G_{δ} closed.

Remark 2.2 The converse of the above Proposition 2.2 need not be true.

Example 2.2 Every fuzzy locally G_{δ} closed set need not be fuzzy locally regular closed. Let X = [0, 1] and

let
$$\lambda(n) \in I^X$$
 be define as $\lambda(n) = \frac{2n}{8n+2}$, where $n = 1, 2, ..., \infty$. Define the fuzzy topology as follows: $T = \{0, 1, 2, ..., \infty\}$

1, λ (n)}. Now, (X, T) is a fuzzy topological space. Then, $\mu = \bigwedge_{n=1}^{\infty} \lambda(n) = \frac{1}{4}$ is fuzzy G_{δ} . Thus $\mu = \mu \wedge 1$

1 is fuzzy locally G_{δ} closed. But, μ is not a fuzzy locally regular closed set. Hence every fuzzy locally G_{δ} closed set need not be fuzzy locally regular closed.

Proposition 2.3 Every fuzzy locally closed set is fuzzy locally G_8 closed.

Remark 2.3 The converse of the above Proposition 2.3 need not be true. Example 2.3 Every fuzzy locally G_{δ} closed set need not be fuzzy locally closed.

Let X = [0, 1] and let λ (n) \in I^X be define as λ (n) = $\frac{n}{1+7n}$, where

 $n = 1, 2, \dots, \infty$. Define the fuzzy topology as $T = \{ 0, 1, \lambda (n) \}$. Now, (X, T) is a fuzzy topological space.

Then, for the fuzzy G_{δ} set $\mu = \bigwedge_{n=1}^{\infty} \lambda$ (n) = $\frac{1}{7}, \mu = \mu \wedge 1$ is fuzzy locally G_{δ} closed. But, μ is not

fuzzy locally closed.

Definition 3.4 Let (X, T) be a fuzzy topological space. Any $\lambda \in I^X$ is called a **fuzzy locally pre-closed set** (briefly, FLpcs) if $\lambda = \mu \land \gamma$, where μ is fuzzy open and γ is fuzzy pre-closed. Its complement is said to be **fuzzy locally pre-open.**

Proposition 2.4 Every fuzzy locally closed set is fuzzy locally pre-closed.

Remark 2.4 The converse of the above Proposition 2.4 need not be true.

Example 2.4 Every fuzzy locally pre-closed set need not be fuzzy locally closed. Let $X = \{a, b\}$ and let λ_1 , λ_2 , $\lambda_3 \in I^X$ be defined as follows: $\lambda_1(a) = 0.2$, $\lambda_1(b) = 0.3$; $\lambda_2(a) = 0.3$, $\lambda_2(b) = 0.4$; $\lambda_3(a) = 0.85$, $\lambda_3(b) = 0.75$. Define the fuzzy topology on X as $T = \{0, 1, \lambda_1, \lambda_2, \lambda_3\}$. Clearly, (X, T) is a fuzzy topological space. Let $\gamma \in I^X$ be defined as $\gamma(a) = 0.8$; $\gamma(b) = 0.9$. Then γ is fuzzy pre-closed. Thus $\lambda_3 = 0.8$, $\gamma = (0.8, 0.75) = \lambda$ is fuzzy locally pre-closed. But, λ is not fuzzy locally closed.

Definition 2.5 Let (X, T) be a fuzzy topological space. Any $\lambda \in I^X$ is called a **fuzzy locally** α - closed set (briefly, FL α - cs) if $\lambda = \mu \land \gamma$, where μ is fuzzy open and γ is fuzzy α - closed. Its complement is said to be **fuzzy locally** α - open.

Proposition 2.5 Every fuzzy locally closed set is fuzzy locally α - closed.

Remark 2.5 The converse of the above Proposition 2.5 need not be true.

Example 2.5 Every fuzzy locally α - closed set need not be fuzzy locally closed. Let $X = \{a, b\}$ and let $\lambda_1, \lambda_2, \lambda_3 \in I^X$ be defined as follows: $\lambda_1(a) = 0.8, \lambda_1(b) = 0.85; \lambda_2(a) = 0.5, \lambda_2(b) = 0.3; \lambda_3(a) = 0.3, \lambda_3(b) = 0.1$. Define the fuzzy topology on X as $T = \{0, 1, \lambda_1, \lambda_2, \lambda_3\}$. Clearly, (X, T) is a fuzzy topological space. Let $\gamma \in I^X$ be defined as $\gamma(a) = 0.7, \gamma(b) = 0.8$. Then γ is fuzzy α - closed. Thus, for any $\lambda_1 \in T, \lambda_1 \land \gamma = \gamma$ is fuzzy locally α - closed. But, λ is not a fuzzy locally closed set. **Proposition 2.6** Every fuzzy locally α -closed set is fuzzy locally pre-closed.

Remark 2.6 The converse of the above Proposition 2.6 need not be true.

Example 2.6 Every fuzzy locally pre-closed set need not be fuzzy locally α - closed. Let $X = \{a, b\}$ $\}$ and let $\lambda_1, \lambda_2, \lambda_3 \in I^X$ be defined as follows: $\lambda_1(a) = 0.2, \lambda_1(b) = 0.3; \lambda_2(a) = 0.3, \lambda_2(b) = 0.4; \lambda_3(a) = 0.85, \lambda_3(b) = 0.75$. Define the fuzzy topology as $T = \{0, 1, \lambda_1, \lambda_2, \lambda_3\}$. Clearly, (X, T) is a fuzzy topological space. Let $\gamma \in I^X$ be defined as $\gamma(a) = 0.8, \gamma(b) = 0.9$. Then γ is fuzzy pre-closed. Thus, for $\lambda_3 \in T$, $\lambda_3 \wedge \gamma = \lambda = (0.8, 0.75)$ is **fuzzy locally pre-closed. But** λ **is not fuzzy locally** α - closed.

Remark 2.7 The notions of fuzzy locally G_{δ} closed sets and fuzzy locally α - closed sets are independent.

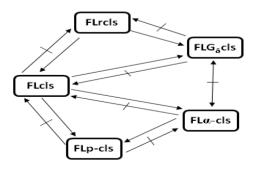
Example 2.7 Let X = [0, 1] and let λ (n) \in I^X be define as λ (n) = $\frac{3n}{18n+1}$, where n = 1, 2.....∞. Define

the fuzzy topology as T = {0, 1, $\lambda(n)$ }. Clearly, (X, T) is a fuzzy topological space. Then, $\mu = \bigwedge_{n=1}^{\infty} \lambda(n) = \frac{1}{6}$ is

fuzzy G_{δ} . Thus for the fuzzy G_{δ} set μ and for the fuzzy closed set 1, $\mu = \mu \land 1 = \frac{1}{6} \land 1 = \frac{1}{6}$ is **fuzzy locally** G_{δ} closed. But, μ is not fuzzy locally α - closed. Hence, every fuzzy locally G_{δ} closed set need not be fuzzy locally α - closed.

Example 2.8 Let X = {a, b} and let $\lambda_1, \lambda_2, \lambda_3 \in I^X$ be defined as follows: $\lambda_1(a) = 0.3$, $\lambda_1(b) = 0.1$; $\lambda_2(a) = 0.5$, $\lambda_2(b) = 0.3$; $\lambda_3(a) = 0.8$, $\lambda_3(b) = 0.85$. Define the fuzzy topology as T = { 0, 1, λ_1 , λ_2, λ_3 }. Clearly, (X, T) is a fuzzy topological space. Let $\gamma \in I^X$ be defined as $\gamma(a) = 0.7$, $\gamma(b) = 0.8$. Then γ is fuzzy α - closed. Thus, for any $\lambda_3 \in T$, $\lambda_3 \wedge \gamma = \gamma$ is fuzzy locally α - closed. But, λ is not a fuzzy locally closed set and hence not fuzzy locally G_{δ} closed. Therefore, every fuzzy locally α - closed set need not be fuzzy locally G_{δ} closed. Hence every fuzzy locally G_{δ} closed sets and fuzzy locally α - closed sets are of independent notions.

Remark 2.8 Clearly the above discussions give the following implications :



3.0N FUZZY LOCALLY G_8 CONTINUOUS FUNCTIONS

Definition 3.1 Let (X, T) be a fuzzy topological space. For any fuzzy set λ of X, the fuzzy locally preclosure of λ and the fuzzy locally pre-interior of λ are defined respectively, as FLp-cl $(\lambda) = \bigwedge \{ \mu \in I^X : \mu \geq \lambda; \mu \text{ is a fuzzy locally pre-closed set} \}$ and FLp-int $(\lambda) = \bigvee \{ \mu : \mu \leq \lambda, \mu \text{ is a fuzzy locally pre$ $open set} \}$.

Proposition 3.1 Let (X, T) and (Y, S) be any two fuzzy topological spaces. Then for any function $f : (X, T) \rightarrow (Y, S)$ the following statements are equivalent:

- (a) f is fuzzy locally pre-continuous.
- (b) For every $\lambda \in I^{X}$, f (FLpcl (λ)) \leq cl (f (λ)).
- (c) For every $\lambda \in I^{Y}$, $f^{-1}(cl(\lambda)) \ge FLpcl(f^{-1}(\lambda))$.
- (d) For every $\lambda \in I^{Y}$, $f^{-1}(int(\lambda)) \leq FLpint(f^{-1}(\lambda))$.

Definition 3.2 Let (X, T) and (Y, S) be any two fuzzy topological spaces. Any $f: (X, T) \rightarrow (Y, S)$ is said to be a **fuzzy locally continuous function** (briefly, FLcf) if for each fuzzy closed set $\lambda \in I^Y$, $f^{-1}(\lambda) \in I^X$ is fuzzy locally closed.

Definition 3.3 Let (X, T) and (Y, S) be any two fuzzy topological spaces. Any function $f: (X, T) \rightarrow (Y, S)$ is said to be a **fuzzy locally regular continuous function** (briefly, FLrcf) if for each fuzzy closed set $\lambda \in I^Y$, $f^{-1}(\lambda) \in I^X$ is fuzzy locally regular closed.

Proposition 3.2 Every fuzzy locally regular continuous function is fuzzy locally continuous.

Remark 3.1 The converse of the above Proposition 3.2 need not be true.

Example 3.1 Every fuzzy locally continuous function need not be fuzzy locally regular continuous. Let X = { a, b } and let $\lambda_1, \lambda_2, \lambda_3 \in I^X$ be defined as follows: $\lambda_1(a) = 0.3, \lambda_1(b) = 0.2; \lambda_2(a) = 0.5, \lambda_2(b) = 0.8; \lambda_3(a) = 0.4, \lambda_3(b) = 0.7$. Define the fuzzy topology on X as T = { 0, 1, $\lambda_1, \lambda_2, \lambda_3$ }. Define the fuzzy topology on Y as S = { 0, 1, λ }, where $\lambda \in I^Y$ is defined as $\lambda(a) = 0.7, \lambda(b) = 0.6$. Clearly, (X, T) and (Y, S) are fuzzy topological spaces. Define f : (X, T) \rightarrow (Y, S) as f (a) = b, f (b) = a. Now, f⁻¹ (1 - λ) = (0.4, 0.3) is fuzzy locally closed in (X, T) but not fuzzy locally regular closed. Hence every fuzzy locally continuous function need not be fuzzy locally regular continuous.

Definition 3.4 Let (X, T) and (Y, S) be any two fuzzy topological spaces. A function $f: (X, T) \rightarrow (Y, S)$ is said to be a **fuzzy locally** G_{δ} **continuous function** (briefly, $FLG_{\delta}cf$) if for each fuzzy closed set $\lambda \in I^{Y}$, $f^{-1}(\lambda) \in I^{X}$ is fuzzy locally G_{δ} closed.

Proposition 3.3 Every fuzzy locally regular continuous function is fuzzy locally G₈ continuous.

Remark 3.2 The converse of the above Proposition 3.3 need not be true.

Example 3.2 Every fuzzy locally G_{δ} continuous function need not be fuzzy locally regular continuous. Let X = [0, 1] and let $\lambda(n) \in I^X$ be define as $\lambda(n) = \frac{2n}{8n+2}$, where $n = 1, 2, ..., \infty$. Let $Y = \{a\}$. Define the fuzzy topology on X as $T = \{0, 1, \lambda(n)\}$. Define the fuzzy topology on Y as $S = \{0, 1, \lambda\}$, where $\lambda \in I^Y$ be defined as $\lambda(a) = \frac{3}{4}$. Clearly (X, T) and (Y, S) are fuzzy topological spaces. Let $f : (X, T) \rightarrow (Y, S)$ be an identity function. Then, $f^{-1}(1 - \lambda) = (1 - \lambda) \in I^X$ is fuzzy locally G_{δ} closed. Thus f is fuzzy locally G_{δ} continuous. But, $f^{-1}(1 - \lambda)$ is not a fuzzy locally regular closed set. Hence f is not fuzzy locally regular continuous.

Proposition 3.4 Every fuzzy locally continuous function is fuzzy locally G_{s} continuous.

Remark 3.3 The converse of the above Proposition 3.4 need not be true.

Example 3.3 Every fuzzy locally G_{δ} continuous function need not be fuzzy locally continuous. Let $X = [0, \infty)$

1] and let λ (n) $\in I^X$ be define as λ (n) $= \frac{n}{1+7n}$, where n = 1, 2.....∞. Let Y = {a}. Define the fuzzy

topology on X as $T = \{0, 1, \lambda(n)\}$. Define the fuzzy topology on Y as $S = \{0, 1, \lambda\}$, where $\lambda \in I^{Y}$ is defined as $\lambda(a) = \frac{6}{7}$. Clearly, (X, T) and (Y, S) are fuzzy topological spaces. Let $f : (X, T) \to (Y, S)$ be an identity function.

Then, $f^{-1}(1 - \lambda) = (1 - \lambda) \in I^X$ is fuzzy locally G_{δ} closed. Thus **f** is fuzzy locally G_{δ} continuous. But $f^{-1}(1 - \lambda)$ is not a fuzzy locally closed set. Hence **f** is not fuzzy locally continuous.

Definition 3.5 Let (X, T) and (Y, S) be any two fuzzy topological spaces. A function $f: (X, T) \rightarrow (Y, S)$ is said to be a **fuzzy locally pre-continuous function** (briefly,FLp-cf) if for each fuzzy closed set $\lambda \in I^Y$, $f^{-1}(\lambda) \in I^X$ is fuzzy locally pre-closed.

Proposition 3.5 Every fuzzy locally continuous function is fuzzy locally pre-continuous.

Remark 3.4 The converse of the above Proposition 3.5 need not be true.

Example 3.4 Every fuzzy locally pre-continuous function need not be fuzzy locally continuous. Let X ={a, b} and let $\lambda_1, \lambda_2, \lambda_3 \in I^X$ be defined as follows: $\lambda_1 (a) = 0.2$, $\lambda_1 (b) = 0.3$; $\lambda_2 (a) = 0.3$, $\lambda_2 (b) = 0.4$; $\lambda_3 (a) = 0.85$, $\lambda_3 (b) = 0.75$. Define the fuzzy topology on X as T = {0, 1, $\lambda_1, \lambda_2, \lambda_3$ }. Define the fuzzy topology on Y as S = {0, 1, $\lambda}$ }, where $\lambda \in I^Y$ is defined as $\lambda (a) = 0.25$, $\lambda (b) = 0.2$. Clearly, (X, T) and (Y, S) are fuzzy topological spaces. Define f : (X, T) \rightarrow (Y, S) as f (a) = b; f (b) = a. Now, f⁻¹(1 - λ) = (0.8, 0.75) is fuzzy pre-closed in (X, T). Thus, $\lambda_3 \wedge f^{-1}(1 - \lambda) = (0.8, 0.75)$ is fuzzy locally pre-closed but not fuzzy locally closed.

Definition 3.6 Let (X, T) and (Y, S) be any two fuzzy topological spaces. Any $f: (X, T) \rightarrow (Y, S)$ is said to be a **fuzzy locally** α - continuous function (briefly, FL α -cf) if for each fuzzy closed set $\lambda \in I^Y$, $f^{-1}(\lambda) \in I^X$ is fuzzy locally α - closed.

Proposition 3.6 Every fuzzy locally continuous function is fuzzy locally α - continuous.

Remark 3.5 The converse of the above Proposition 3.6 need not be true.

Example 3.5 Every fuzzy locally α - continuous function need not be fuzzy locally continuous. Let $X = \{a, b\}$ and let $\lambda_1, \lambda_2, \lambda_3 \in I^X$ be defined as follows: $\lambda_1(a) = 0.8$, $\lambda_1(b) = 0.85$; $\lambda_2(a) = 0.5$, $\lambda_2(b) = 0.3$; $\lambda_3(a) = 0.3$, $\lambda_3(b) = 0.1$. Define the fuzzy topology on X as $T = \{0, 1, \lambda_1, \lambda_2, \lambda_3\}$. Define the fuzzy topology on Y as $S = \{0, 1, \lambda\}$, where $\lambda \in I^Y$ is defined as $\lambda(a) = 0.2$, $\lambda(b) = 0.3$. Clearly, (X, T) and (Y, S) are fuzzy topological spaces. Define $f : (X, T) \rightarrow (Y, S)$ as f(a) = b; f(b) = a. Now, $f^{-1}(1 - \lambda) = (0.7, 0.8)$ is fuzzy α -closed.

Proposition 3.7 Every fuzzy locally α -continuous function is fuzzy locally pre-continuous.

Remark 3.6 The converse of the above Proposition 3.7 need not be true.

Example 3.6 Every fuzzy locally pre-continuous function need not be fuzzy locally α -continuous. Let X = {a, b} and let $\lambda_1, \lambda_2, \lambda_3 \in I^X$ be defined as follows: $\lambda_1(a) = 0.2$, $\lambda_1(b) = 0.3$; $\lambda_2(a) = 0.3$, $\lambda_2(b) = 0.4$; $\lambda_3(a) = 0.85$, $\lambda_3(b) = 0.75$. Define the fuzzy topology as T = { 0, 1, $\lambda_1, \lambda_2, \lambda_3$ }. Define the fuzzy topology as S = { 0, 1, λ_3 }, where $\lambda \in I^Y$ is defined as $\lambda(a) = 0.1$, $\lambda(b) = 0.2$. Clearly, (X, T) and (Y, S) are fuzzy topological spaces. Define f : (X, T) \rightarrow (Y, S) as f (a) = b; f (b) = a. Now, $f^{-1}(1 - \lambda) = (0.8, 0.9)$ is fuzzy pre-closed in (X, T). Thus $\lambda_3 \wedge f^{-1}(1 - \lambda) = (0.8, 0.75)$ is fuzzy locally pre-closed but not fuzzy locally α - closed.

Remark 3.7 The notions of fuzzy locally G_{δ} continuous functions and fuzzy locally α -continuous functions are independent.

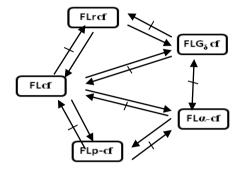
Example 3.7 Let X = [0, 1] and let $\lambda(n) \in I^X$ be define as $\lambda(n) = \frac{3n}{18n+1}$, where $n = 1, 2, \dots, \infty$. Define the fuzzy topology on X as $T = \{0, 1, \lambda(n)\}$. Define the fuzzy topology on Y as $S = \{0, 1, \lambda\}$, where $\lambda \in I^Y$ be defined as $\lambda(a) = \frac{5}{6}$. Clearly, (X, T) and (Y, S) are fuzzy topological spaces. Let $f: (X, T) \to (Y, S)$ be an identity function. Then, $f^{-1}(1 - \lambda) = (1 - \lambda) \in I^X$ is fuzzy locally G_{δ} closed, where $f^{-1}(1 - \lambda) = \Lambda_{n=1}^{\infty} \lambda(n)$ is fuzzy G_{δ} . Thus **f** is fuzzy locally G_{δ} continuous. But, $f^{-1}(1 - \lambda)$ is not fuzzy locally α - closed. Hence **f** is not fuzzy locally α - continuous.

A STUDY ON FUZZY LOCALLY G₈-Closed SETS

Example 3.8 Let X = { a, b } and let $\lambda_1, \lambda_2, \lambda_3 \in I^X$ be defined as $\lambda_1(a) = 0.3, \lambda_1(b) = 0.1; \lambda_2(a) = 0.5, \lambda_2(b) = 0.3; \lambda_3(a) = 0.8, \lambda_3(b) = 0.85$. Define the fuzzy topology on X as T = {0, 1, $\lambda_1, \lambda_2, \lambda_3$ }. Define the fuzzy topology on Y as S = {0, 1, $\lambda}$ }, where $\lambda \in I^Y$ is defined as λ (a) = 0.2, λ (b) = 0.3. Clearly, (X, T) and (Y, S) are fuzzy topological spaces. Define f : (X, T) \rightarrow (Y, S) as f (a) = b; f (b) = a. Now, $f^{-1}(1-\lambda) = (0.7, 0.8)$ is fuzzy α -closed. Thus $\lambda_3 \wedge f^{-1}(1-\lambda) = (0.7, 0.8)$ is fuzzy locally α - closed but not fuzzy locally G_{δ} closed. Hence every fuzzy locally α - continuous function need not be fuzzy locally G_{δ} continuous.

Thus, fuzzy locally G_{δ} continuous functions and fuzzy locally α - continuous functions are of independent notions.

Remark 3.8 Clearly the above discussions give the following implications:



Acknowledgement: The authors express their sincere thanks to the referees for their valuable comments regarding the improvement of the paper.

REFERENCES

- [1] Amudhambigai B, Uma M. K. and Roja E, r-Fuzzy- G_{δ} - \tilde{g} -Locally Closed Sets and Fuzzy G_{δ} - \tilde{g} -Locally Continuous Functions, Int. J. of Mathematical Sciences and Applications, Vol.1, No.3, September 2011.
- [2] Azad K. K., On Fuzzy Semi-continuity, Fuzzy Almost continuity and Fuzzy Weakly Continuity, J. Math. Anal. Appl., 82 (1981), 14 32.
- [3] Balasubramanian G, Maximal fuzzy topologies, Kybernetika, 31 (1995), 459 464.
- [4] Bin Shahna A. S.. On fuzzy strongly semi-continuity and fuzzy pre-continuity, Fuzzy Sets and Systems, 44 (1991), pp. 303 - 408.
- [5] Bourbaki N., General Topology, Part I. Addison-Wesley, Reading, Mass. 1966.
- [6] Chang C. L, Fuzzy Topological Spaces, J. Math. Anal. Appl, 24 (1968), 182 190.
- [7] Erdal Ekici, On Fuzzy Functions, Common. Korean Math. Soc.20 (2005), No. 4.781 789.
- [8] Fatteh U. V. and Bassan D. S., Fuzzy connectedness and its stronger forms, J. Math. Anal. Appl., 111(1985), 449 - 464.
- [9] Ganster M. and Reilly I. L., Locally Closed Sets and Lc-Continuous functions, Internet. J. Math. Sci., Vol-12 No. 3 (1989), 417 - 424.
- [10] Roja E, Uma M. K. and Balasubramanian G, G_δ-connectedness and G_δ-disconnectedness in fuzzy topological spaces, East Asian Math.J.23(2007), No2, 159-174.
- [11] Smets P., The Degree of Belief in a Fuzzy Event Inform, sci., 25(1981), 1 19.
- [12] Sugeno M., An Introductory Survey of Fuzzy Control, Inform, Sci., 36 (1985), 59 83.
- [13] Uma M. K., Roja E. and Balasubramanian G, Semi-Connectedness in fuzzy topological spaces, Kochi J. Math. 4 (2009), 9 - 19.
- [14] Zadeh L. A., fuzzy sets, information and control, 8 (1965), 338 353.