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ABSTRACT 
 

In this paper we discus the alternative approach to prove the irrationality of any 
number by taking advantages of continued fractions and significance of vector Euclidean 
algorithm by showing the special case of √√√√2 and others. Also, we discuss irrationality of 2 
by various proofs.  
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INTRODUCTION 
 

I saw the proof on different books for the 2  being irrational.  I can follow all the steps, but the 
proof doesn't seem valid to me (*) [1] & [2].  I looked around the web and saw very similar descriptions for 
this proof and they too all seem invalid to me.  All the proofs start with the idea that a rational number can 

be written as the ratio of two integers, say
b
a

, and that for any ratio there exists exactly one fully reduced 

fraction (where no integer greater than 1 exists that can be evenly divided into both the numerator and 
denominator.) What I see is there may exist a fraction that is not fully reduced.  Even if I assumed a non-
fully reduced fraction did exist, this does not imply to me there does not exist a non-fully reduced fraction.  
I would want to see that no fully reduced fraction of integers exists anywhere to see the conclusion. 
 

(*) Let us assume that 2  is rational of the form
b
a

, where 
b
a

 can be reduce to lowest terms. 

i.e., 2
2

=








b
a

, or 22 2ba = . As we know that, 2a  is even, a must be even, say a = 2c  ⇒ ( ) 22 22 bc = , 

or 2222 224 bcorbc == ⇒ b must also be even ⇒ In 
b
a

, both a and b are even, but we assumed 

we'd reduced the fraction to lowest terms.  We've got an absurdity, ⇒ 2  should be irrational. 
 
 We are including a better idea to prove irrationality of 2 in this introduction part, as well as we 
generalize the same in the next section. 
 

If we consider 2  is rational, then there exist a positive integer such that 2  × q is again an integer and 

consider it is small.  As we know that 1 < 2  < 2 ⇒ 2  - 1 < 1 ⇒ q ( 2  - 1) < q, and consider this 
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number as r. since 2 r is an integer ⇒ 2 r = (q 2  - q) × 2  = (2q – q × 2 ) or in brief,  r is a 

positive integer less than q and r × 2  is an integer. We have considered that q is the smallest positive 
integer and so we got an absurdity.  
 

Generalization: Let us take [ n ] is the integer part of n . Here n is a non perfect square number (n = 2 

etc). For any n that is not a perfect square, we may prove that n  is irrational as we discussed above by 

considering q × ( n  - [ n ]). Similarly, if n is a perfect square we get n  = [ n ], then there is no 
absurdity. Now the question arrives that, if x is a rational but not integral zero of a monic integer 

polynomial of degree d, let q be the least positive integer so that jqx  is an integral for every j < d and 
letting q(x – n) with  n is an integer and n < x < n + 1, we get an absurdity. In other words, we have proved 
that all algebraic integers are integers.  
 
Remark: The first such number was the golden ratio, (√5 +1)/2, as expressed in the ratio of lengths in a 
regular pentacle.   I'm pretty sure this was the one that was first discovered by the Pythagoreans, allegedly 
the unfortunate Hypasus, subsequently denavisated and so on. 
 

CONTINUED FRACTIONS 
 
 In mathematics, an infinite continued fraction is an infinite expression obtained through an 
iterative process of representing a number as the sum of its integer part and the reciprocal of another 
number, then writing this other number as the sum of its integer part and another reciprocal, and so on. A 
finite continued fraction is similar, but the iteration/recursion is terminated after finitely many steps by 
using an integer in lieu of another continued fraction. In either case, all integers in the sequence, other than 
the first, must be positive [3]. 
 

 Here we will take 2 + 1 in the place of 2 . Let us take a quadratic equation m2 – 2m – 1 = 0, 

where one of the m = 2  + 1  ⇒ m = 2 + 
v
1

 

⇒ 2 + 1 = 2 + 

...2
1

2

1
2

1
2

1
2

1

+
+

+
+

+
 

  
 This leads the above continued fraction. As we know that any number with infinitely repeats in 
simple continued fraction form is simply an irrational.  
 
 Now, we are introducing a direct proof to say the irrationality of 2 (and others) by taking an 
advantage of Bezout lemma [4].  
 

Theorem 1: k = n  is integer rational for all n ∈ N. 

Proof: Let us take k = 
b
a

with (a, b) = 1 ⇒ ad – bc = 1 for any c & d ∈ Z. 

By Bezout lemma, (a – bk) (c + dk) = 0 = ac – bdn + k ⇒ k for k ∈ Z. 
 
 Alternatively, we can prove the same for all non perfect square numbers in the following way.  
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Theorem 2: The square roots of all non-perfect integers are irrational. 
 
Proof: Let us take x = √2 is an irrational by close look at (x + 1) and (x – 1). Here, (x – 1) = 1/(x + 1) and x 
– 1 = a/b gives us (a/b) + 2 = b/a, such that (a + 2b, b) = 1, which implies that a + 2b = b and b = a ⇒ a = 0 
= b, which is an absurdity.[5] 
 
 Similarly, we can use the same idea, although we won’t consider reciprocals. In fact, if √n is 

rational and then for any a/b with (a, b) = 1, we have √n – 
b
a

= 
d
c

 is a rational for some c and d are in Z. 

Of course, (c, d) =1 as d > 0. Now we see, 
d
c

+ 2
b
a

= n – 2

2

b
a

 ⇒ cb2 = d(nb2 – a2 – 2ab) ⇒ b2| d(nb2 – a2 – 

2ab). Since b2 is co-prime to (nb2 – a2 – 2ab), any prime factor of b2 should be a prime factor of b and hence 
also of nb2 – 2ab. If it were also of (nb2 – a2 – 2ab), then it would divide a2 and hence a, contrary to (a, b) = 
1. Therefore, we have b2|d. ⇒ d = b2r.Then c = r(nb2-a2-2ab). Now any prime factor of r divides c. Since r|d 

and(c, d)=1, r is a unit. As we have d > 0 and b2 > 0, r > 0. So r = 1 ⇒ d = b2 ⇒ √n = 
b
a

 + 2b
c

 = 

2

)(
b

cab +
. By letting 

b
a

= 0 and √n = c, an integer such that n = c2 is a square of an integer. Thus, if n is 

not a perfect square integer, and then √n is an irrational.   

 
Remark: We can also use the rational root test [6] for the polynomial equation x2 = 2, which satisfies for x 
= ± 2. If this equation has a rational solution of the form a/b ⇒ a|2 as well as b|1 and then a/b ∈ {-2, -1, 1, 
2}. However, none of this set of solutions is satisfying the above polynomial. Therefore x2 – 2 = 0 has no 
rational roots and 2 is an irrational.  
 

DISCUSSION BY UFD 
 

We can alternatively prove the theorem 1 by the following way. 
 
Theorem 3: If a and b are positive integers, then a1/b is either irrational or integer. 
 

Proof:  If  ba
1

 = 
y
x

 and y does not divide x ⇒  a = bba )( 1  = b

b

y
x  ∉  Z, as yb does not divide xb, 

which is an absurdity. We found a variant of this proof on [7] under UFD.  
Lemma: If y does not divides x, then yb does not divides xb. UFD implies that there exists a prime p and 
positive integer t such that pt divides y while pt does not divide x. It implies that pt divides yb while pbt does 
not divide xt.  Hence y b does not divide xb. 

 
ANALYTICAL APPROACH 

 

Lemma1: Let α  R+ and p1,p2,....,q1,q2,..  N such that nn pq −α ≠0 for all n  N and )(lim nn p∞→ = 

)(lim nn q∞→ =
 ∞ , 0lim =−∞→ nnn pqα  then α  is irrational. 

Proof: Let α = 
b
a

 with a,b  N+. For sufficiently large n, 
b

pq nn

1
0 <−< α  

⇒  
bpb

aq
n

n
1

)(0 <−<  

10 <−< nn bpaq  
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But, 10 <−< nn bpaq . 

∴ α  is irrational. 
 

Theorem 4: 2  is irrational 

Proof: Let p1 = q1 = 1 and 
22

1 2 nnn qpp +=+   

nnn qpq 21 =+  for all n ∈ N (which can be proved by induction)  

122
120 −<−< nnn pq  for all n ∈N. For n = 1  

2/120 11 <−< pq  As by induction, if it is true for n then it is true for n+1.  

nnnnn qpqp 2
22

2
1)2()2(20 <+−< ,   

nnn pq 211 2
120 <−< ++ ,  
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