American Journal of Mathematics and Sciences Vol. 5, No.1, (January-December, 2016) Copyright © Mind Reader Publications ISSN No: 2250-3102 <u>www.journalshub.com</u>

ALEKSANDROV URYSOHN COMPACTNESS CRITERION ON INTUITIONISTIC FUZZY S * STRUCTURE SPACE

D.Amsaveni d_amsaveni@rediffmail.com M.K. Uma and E.Roja Department of Mathematics Sri Sarada College for Women Salem 636016 Tamilnadu,India.

Abstract

In this paper, the intuitionistic fuzzy S^* maximal compact extension $\beta(S)$ (Cech extension) of an arbitrary intuitionistic fuzzy S^* completely regular space using the method of intuitionistic fuzzy S^* centred systems and the Aleksandrov Urysohn compactness criterion on intuitionistic fuzzy S^* structure space has been studied and discussed as in [8].

Key words

Intuitionistic fuzzy S^* structure space (S, S^*) , intuitionistic fuzzy S^* centred system, a maximal intuitionistic fuzzy S^* centred system, intuitionistic fuzzy S^* dentred system, intuitionistic fuzzy S^* maximal compact, intuitionistic fuzzy S^* completely regular space, intuitionistic fuzzy S^* maximal compact extension $\beta(S)$.

2000 Mathematics Subject Classification 54A40, 03E72.

1.Introduction

After the introduction of the concept of fuzzy sets by Zadeh [11], several researches were conducted on the generalizations of the notion of fuzzy set. The concept of "Intuitionistic fuzzy sets" was first published by Atanassov [1] and many works by the same author and his colleagues appeared in the literature [2-4]. Later this concept was generalized to "Intuitionistic L-fuzzy sets" by Atanassov and stoeva [5]. An introduction to intuitionistic fuzzy topological space was introduced by Dogan Coker [6]. Fuzzy continuity in intuitionistic fuzzy topological spaces was introduced by Gurcay. H, Coker, D., and Haydar, Es. A., [7]. The method of centered system in the theory of topological spaces was introduced by Iliadis. S, Fomin.S [8]. The method of centered system in fuzzy topological spaces was introduced by M.K.Uma, E.Roja and Balasubramanian.G [10]. In this paper, the intuitionistic fuzzy S^* maximal compact

extension $\beta(S)$ (Cech extension) of an arbitrary intuitionistic fuzzy S^* completely regular space using the method of intuitionistic fuzzy S^* centred systems and the Aleksandrov Urysohn compactness criterion on intuitionistic fuzzy S^* structure space has been studied and discussed as in [8]. Some interesting properties and characterizations are studied.

2.Preliminaries

Definition 2.1[3] Let X be a non empty fixed set. An intuitionistic fuzzy set (*IFS* for short) A is an object having the form $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}$ where the functions $\mu_A : X \to I$ and $\gamma_A : X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non membership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$.

Remark 2.1[6] For the sake of simplicity, we shall use the symbol $A = \langle x, \mu_A, \gamma_A \rangle$.

Definition 2.2[6] Let X be a non empty set and let $\{A_i : i \in J\}$ be an arbitrary family of *IFSs* in X. Then (a) $\bigcap A_i = \{ \langle x, \land \mu_{A_i}(x), \lor \gamma_{A_i}(x) \rangle : x \in X \};$ (b) $\bigcup A_i = \{ \langle x, \lor \mu_{A_i}(x), \land \gamma_{A_i}(x) \rangle : x \in X \}.$

Definition 2.3[6] Let X be a non empty fixed set. Then, $0_{\sim} = \{ \langle x, 0, 1 \rangle : x \in X \}$ and $1_{\sim} = \{ \langle x, 1, 0 \rangle : x \in X \}$.

Definition 2.4[6] Let X and Y be two non empty fixed sets and $f: X \to Y$ be a function. Then

(a) If $B = \{ \langle y, \mu_B(y), \gamma_B(y) \rangle : y \in Y \}$ is an *IFS* in *Y*, then the pre image of *B* under *f*, denoted by $f^{-1}(B)$, is the *IFS* in *X* defined by $f^{-1}(B) = \{ \langle x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) \rangle : x \in X \}$

(b) If $A = \{ \langle x, \lambda_A(x), \nu_A(x) \rangle : x \in X \}$ is an *IFS* in X, then the image of A under f, denoted by f(A), is the *IFS* in Y defined by

$$f(A) = \left\{ \left\langle y, f(\lambda_A)(y), (1 - f(1 - \nu_A))(y) \right\rangle : y \in Y \right\} \text{ where,}$$

$$f(\lambda_A)(y) = \left\{ \begin{array}{l} \sup_{x \in f^{-1}(y)} \lambda_A(x) & \text{if } f^{-1}(y) \neq 0 \\ 0, & \text{otherwise,} \end{array} \right.$$

$$(1 - f(1 - \nu_A))(y) = \left\{ \begin{array}{l} \inf_{x \in f^{-1}(y)} \nu_A(x) & \text{if } f^{-1}(y) \neq 0 \\ 1, & \text{otherwise.} \end{array} \right.$$

for the *IFS* $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}.$

Definition 2.5[6] Let X be a non empty set. An intuitionistic fuzzy topology (*IFT* for short) on a non empty set X is a family τ of intuitionistic fuzzy sets (*IFSs* for short) in X satisfying the following

axioms: (T₁) $0_{\sim}, 1_{\sim} \in \tau$, (T₂) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$, (T₃) $\bigcup_{i=\tau} G_i \in \tau$ for any arbitrary $\subseteq \tau$

family $\{G_i : i \in J\}$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (*IFTS* for short) and any *IFS* in τ is known as an intuitionistic fuzzy open set (*IFOS* for short) in X.

Definition 2.6[6] Let X be a non empty set. The complement \overline{A} of an *IFOS* A in an *IFTS* (X, τ) is called an intuitionistic fuzzy closed set (*IFCS* for short) in X.

Definition 2.7[6] Let (X, τ) be an *IFTS* and $A = \langle x, \mu_A, \gamma_A \rangle$ be an *IFS* in X. Then the fuzzy interior and fuzzy closure of A are defined by

 $cl(A) = \bigcap \{ K : K \text{ is an } IFCS \text{ in } X \text{ and } A \subseteq K \},$

 $int(A) = \bigcup \{ G : G \text{ is an } IFOS \text{ in } X \text{ and } G \subseteq A \}.$

Remark 2.2[6] Let (X, τ) be an *IFTS*. cl(A) is an *IFCS* and int(A) is an *IFOS* in X, and (a) A is an *IFCS* in X iff cl(A) = A; (b) A is an *IFOS* in X iff int(A) = A.

Proposition 2.1[6] Let (X, τ) be an *IFTS*. For any *IFS* A in (X, τ) , we have

(a) $cl(\overline{A}) = int(A)$, (b) $int(\overline{A}) = cl(A)$.

Definition 2.8[6] Let (X, τ) and (Y, ϕ) be two *IFTSs* and let $f : X \to Y$ be a function. Then f is said to be fuzzy continuous iff the pre image of each *IFS* in ϕ is an *IFS* in τ .

Definition 2.9[6] Let (X, τ) and (Y, ϕ) be two *IFTSs* and let $f: X \to Y$ be a function. Then f is said to be fuzzy open(resp.closed) iff the image of each *IFS* in τ (resp.(1- τ)) is an *IFS* in ϕ (resp.(1- ϕ)).

Definition 2.10[9] A fuzzy topological space (X,T) is called fuzzy Hausdorff space iff for any two distinct fuzzy points $p, q \in X$, there exists $U, V \in T$ such that $U \cap V = 0$ with $p \in U$ and $q \in V$.

Definition 2.11[10] Let R be a fuzzy Hausdorff space. A system $p = \{U_{\alpha}\}$ of fuzzy open sets of R is called fuzzy centred if any finite collection of the sets of the system has a non empty intersection. The system p is called a maximal fuzzy centred system or a fuzzy end if it cannot be included in any larger fuzzy centred system of fuzzy open sets.

Definition 2.12[8] An centred system $p = \{U\}$ of open sets of R is called completely regular if for any $U \in p$ there exists a $V \in p$ and an continuous function f on R such that f(r) = 1 for $r \in R \setminus U$, f(r) = 0 for $r \in V$ and $0 \le f(r) \le 1$ for any $r \in R$. In this case V is completely regular in U. A completely regular system is called completely regular end if it is not contained in any larger completely regular system.

Definition 2.13[8] A Hausdorff space $\delta(R)$ is called an extension of a Hausdorff space R if R is contained in $\delta(R)$ as an everywhere dense subset. R is called H - closed if every extension coincides

with R itself. An extension $\delta(R)$ is called H -closed if $\delta(R)$ is H - closed and compact if $\delta(R)$ is compact.

3. CONSTRUCTION OF THE CECH EXTENSION BY MEANS OF CENTRED SYSTEMS.

In this section, the intuitionistic fuzzy S^* maximal compact extension $\beta(S)$ (Cech extension) of an arbitrary intuitionistic fuzzy S^* completely regular space has been constructed by using the method of intuitionistic fuzzy S^* centred systems. Some of its properties and characterizations are discussed. **Definition 3.1** Let X be a non empty set. Let S be a collection of all intuitionistic fuzzy sets of X. An intuitionistic fuzzy S^* structure on S is a collection S^* of subsets of S having the following properties

- (a) ϕ and S are in S^* .
- (b) The union of the elements of any sub collection of S^* is in S^* .
- (c) The intersection of the elements of any finite sub collection of S^* is in S^* .

The collection S together with the structure S^* is called intuitionistic fuzzy S^* structure space. A subset U of S is an intuitionistic fuzzy S^* open set if $U \in S^*$. Its complement is said to be an intuitionistic fuzzy S^* closed set.

Definition 3.2 Let A be a member of S. An intuitionistic fuzzy S^* open set U in (S, S^*) is said to be an intuitionistic fuzzy S^* neighbourhood of A if $A \in G \subset U$ for some intuitionistic fuzzy S^* open set G in (S, S^*) .

Definition3.3 Let (S, S^*) be an intuitionistic fuzzy S^* structure space and $A = \langle x, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy set in X. Then the intuitionistic fuzzy S^* closure and intuitionistic fuzzy S^* interior of A are respectively defined and denoted by

IF $S^*cl(A) = \bigcap \{ K : K \text{ is an intuitionistic fuzzy } S^* \text{ closed sets in } S \text{ and } A \subseteq K \},\$

IF S^* int(A) = $\bigcup \{ G : G \text{ is an intuitionistic fuzzy } S^* \text{ open sets in } S \text{ and } G \subseteq A \}$.

Definition 3.4 The ordered pair (S, S^*) is called an intuitionistic fuzzy S^* Hausdorff space if for each pair A_1 , A_2 of disjoint members of S, there exist disjoint intuitionistic fuzzy S^* open sets U_1 and U_2 such that $A_1 \subseteq U_1$ and $A_2 \subseteq U_2$.

Definition 3.5 Let (S_1, S_1^*) and (S_2, S_2^*) be any two intuitionistic fuzzy S^* structure spaces and let $f:(S_1, S_1^*) \rightarrow (S_2, S_2^*)$ be a function. Then f is said to be an intuitionistic fuzzy S^* continuous iff the pre image of each intuitionistic fuzzy S_2^* open set in (S_2, S_2^*) is an intuitionistic fuzzy S_1^* open set in (S_1, S_1^*) .

Definition 3.6 Let (S_1, S_1^*) and (S_2, S_2^*) be two intuitionistic fuzzy S^* structure spaces and let $f:(S_1, S_1^*) \rightarrow (S_2, S_2^*)$ be a bijection function. If both the function f and the inverse function $f^{-1}:(S_2, S_2^*) \rightarrow (S_1, S_1^*)$ are intuitionistic fuzzy S^* continuous, then f is called a intuitionistic fuzzy S^* homeomorphism.

Note 3.1 Throughout this paper let U_{α} : $\alpha = 1, 2, 3, ..., n$ be an intuitionistic fuzzy S^* open set in (S, S^*) .

Definition 3.7 Let (S,S^*) be an intuitionistic fuzzy S^* Hausdorff space. A system $p = \{U_{\alpha} : \alpha = 1, 2, 3, ..., n\}$ of intuitionistic fuzzy S^* open sets is called an intuitionistic fuzzy S^* centred system if any finite collection of the sets of the system has a non empty intersection. The intuitionistic fuzzy S^* centred system p is called a maximal intuitionistic fuzzy S^* centred system or an intuitionistic fuzzy S^* end if it cannot be included in any larger intuitionistic fuzzy S^* centred system of intuitionistic fuzzy S^* open sets.

Note 3.2 Throughout this chapter let $U_{\alpha}: \alpha = 1, 2, 3, ..., n$ be an intuitionistic fuzzy S^* open set in (S, S^*) .

Proposition 3.1 Let (S, S^*) be an intuitionistic fuzzy S^* Hausdorff space and $p = \{U_{\alpha}\}$ is an intuitionistic fuzzy S^* centred system in (S, S^*) . Then the following properties hold

1. If
$$U_i \in p$$
 $(i=1,2,...n)$, then $\bigcap_{i=1}^n U_i \in p$.

- 2. If $\phi \neq U \subseteq H$, $U \in p$ and H is intuitionistic fuzzy S^* open set, then $H \in p$.
- 3. If H is an intuitionistic fuzzy S^* open set, then $H \notin p$ iff there exists $U \in p$ such that $U \cap H = \phi$.
- 4. If $U_1 \bigcup U_2 = U_3 \in p$, U_1 and U_2 are intuitionistic fuzzy S^* open sets and $U_1 \bigcap U_2 = \phi$, then either $U_1 \in p$ or $U_2 \in p$.
- 5. If IFS * cl(U) = S, then $\phi \neq U \in p$ for any intuitionistic fuzzy S^* end p.

Definition 3.8 Let $\theta(S)$ denote the collection of all intuitionistic fuzzy S^* ends belonging to S. An intuitionistic fuzzy S^* topology is introduced into $\theta(S)$ in the following way. Let O_U be the set of all intuitionistic fuzzy S^* ends that contains U as an element, where U is an intuitionistic fuzzy S^* open set of S. Therefore O_U is an intuitionistic fuzzy S^* end contained in O_U .

Definition 3.9 A subset *A* of an intuitionistic fuzzy S^* structure space (S, S^*) is said to be an everywhere intuitionistic fuzzy S^* dense subset in (S, S^*) if $IFS^*cl(A) = S$.

A subset of an intuitionistic fuzzy S^* structure space (S, S^*) is said to be an nowhere intuitionistic fuzzy S^* dense subset in (S, S^*) if $X \setminus \overline{A}$ is everywhere intuitionistic fuzzy S^* dense subset.

Definition 3.10 Let (S, S^*) be an intuitionistic fuzzy S^* structure space and Y be an intuitionistic fuzzy S^* open set in (S, S^*) . Then the intuitionistic fuzzy S^* relative topology $T_Y = \{G \cap Y : G \in S^*\}$ is called the intuitionistic fuzzy S^* relative (or induced or subspace) topology on Y. The ordered pair (Y, T_Y) is called an intuitionistic fuzzy S^* subspace of the intuitionistic fuzzy S^* space (S, S^*) . **Definition 3.11** Let (S, S^*) be an intuitionistic fuzzy S^* structure space. Then

(a) If a family $\{U_{\alpha} : i \in \Lambda\}$ of intuitionistic fuzzy S^* open sets in (S, S^*) satisfies the condition $S = \bigcup \{U_{\alpha} : i \in \Lambda\}$, then it is called an intuitionistic fuzzy S^* open cover of S. A finite subfamily of the intuitionistic fuzzy S^* open cover $\{U_{\alpha} : i \in \Lambda\}$ of S, which is also an intuitionistic fuzzy S^* open cover of S, is called a finite subcover of $\{U_{\alpha} : i \in \Lambda\}$.

(b) An intuitionistic fuzzy S^* structure space (S, S^*) is called intuitionistic fuzzy S^* compact iff every intuitionistic fuzzy S^* open cover of S has a finite subcover.

Definition 3.12 An intuitionistic fuzzy S^* Hausdorff space $\delta(S)$ is called an extension of an intuitionistic fuzzy S^* Hausdorff space S if S is contained in $\delta(S)$ as an everywhere intuitionistic fuzzy S^* dense subset. S is called an intuitionistic fuzzy S^*H -closed if every extension coincides with S itself. An extension $\delta(S)$ is called an intuitionistic fuzzy S^*H -closed if $\delta(S)$ is an intuitionistic fuzzy S^* compact.

Definition 3.13 Let (S, S^*) be an intuitionistic fuzzy S^* structure space. A system \mathcal{B} of intuitionistic fuzzy S^* open sets of an intuitionistic fuzzy S^* structure space S is called an intuitionistic fuzzy S^* base(or basis) for (S, S^*) if each member of (S, S^*) is a union of members of \mathcal{B} . A member of \mathcal{B} is called an intuitionistic fuzzy S^* basic open set.

Definition 3.14 Let (S, S^*) be an intuitionistic fuzzy S^* structure space. A system of intuitionistic fuzzy S^* open sets of an intuitionistic fuzzy S^* structure space S is called an intuitionistic fuzzy S^* sub-base if it together with all possible finite intersections of members of the system forms a base of S.

Definition 3.15 Let (S_1, S_1^*) and (S_2, S_2^*) be two intuitionistic fuzzy S^* structure spaces. An intuitionistic fuzzy S^* structure space (S_1, S_1^*) is said to be topologically embedded in another intuitionistic fuzzy S^* structure space (S_2, S_2^*) if (S_1, S_1^*) is an intuitionistic fuzzy S^* homeomorphism to an intuitionistic fuzzy S^* subspace of (S_2, S_2^*) .

Definition 3.16 An intuitionistic fuzzy S^* centred system $p = \{U_{\alpha}\}$ of intuitionistic fuzzy S^* open sets of S is called intuitionistic fuzzy S^* completely regular system if for any $U_{\alpha} \in p$ there exists a $V_{\alpha} \in p$ and an intuitionistic fuzzy S^* continuous function f on S such that f(A) = 1 for $A \in S \setminus U_{\alpha}$, f(A) = 0 for $A \in V_{\alpha}$ and $0 \leq f(A) \leq 1$ for any $A \in S$. In this case V_{α} is intuitionistic fuzzy S^* completely regularly contained in U_{α} .

Definition 3.17 An intuitionistic fuzzy S^* completely regular system is called an intuitionistic fuzzy S^* completely regular end if it is not contained in any larger intuitionistic fuzzy S^* completely regular system. The absolute w(S) of intuitionistic fuzzy S^* structure space

The maximal intuitionistic fuzzy S^* centred systems of intuitionistic fuzzy S^* open sets (intuitionistic fuzzy S^* ends), regarded as elements of the intuitionistic fuzzy S^* space $\theta(S)$, fall into two classes: those intuitionistic fuzzy S^* ends each of which contains all the intuitionistic fuzzy S^* ends not containing such systems of intuitionistic fuzzy S^* neighbourhoods. The intuitionistic fuzzy S^* ends of the first type can be regarded as representing the members of the original intuitionistic fuzzy S^* space S, and those of the second type as corresponding to "holes" in S. The collection of all the intuitionistic fuzzy S^* ends of the intuitionistic fuzzy S^* absolute of S which is denoted by w(S). In w(S), each member $V \in S$ is represented by intuitionistic fuzzy S^* ends containing all intuitionistic fuzzy S^* neighbourhoods of S. It is obvious that $w(S) = \bigcup_{V \in S} B(V)$, where B(V) are the intuitionistic fuzzy S^* ends p of S that contain all the intuitionistic fuzzy S^* neighbourhoods of V. The subset w(S) is mapped in a natural way onto S. If $p \in w(S)$, then by definition $\pi_S(p) = V$, where V is the member whose intuitionistic fuzzy S^* neighbourhoods all belong to p and π_S the natural function of w(S) onto S.

Lemma 3.1 An intuitionistic fuzzy S^* system $\{U_{\alpha}\}$ of all intuitionistic fuzzy S^* neighbourhoods of a member A in an intuitionistic fuzzy S^* completely regular space S is an intuitionistic fuzzy S^* completely regular end.

Now we construct an intuitionistic fuzzy S^* structure space which is denoted by $\alpha'(S)$. Its members are all intuitionistic fuzzy S^* completely regular ends of S, and its intuitionistic fuzzy S^* topology is defined as follows: Choose an arbitrary intuitionistic fuzzy S^* open set U in S and the collection O_U of all intuitionistic fuzzy S^* centred completely regular ends of S that contain U as a member is to be an intuitionistic fuzzy S^* neighbourhood of each of them.

Lemma 3.2 An intuitionistic fuzzy S^* completely regular end $p = \{U_\alpha\}$ of an intuitionistic fuzzy S^* structure space S has the following properties:

- (a) if $U_{\beta} \supseteq U_{\alpha} \in p$, then $U_{\beta} \in p$;
- (b) the intersection of any finite number of members of p belongs to p.

Corollary 3.1 $O_U \cap O_V = O_{U \cap V}$

Lemma 3.3 $\alpha'(S)$ is an intuitionistic fuzzy S^* Hausdorff extension of S.

Note 3.3 In an intuitionistic fuzzy S^* completely regular space the intuitionistic fuzzy S^* canonical neighbourhoods form a base.

Lemma 3.4 An intuitionistic fuzzy S^* structure space $\alpha'(S)$ can be continuously mapped onto every intuitionistic fuzzy S^* compact extension of S in such a way that the members of S remain fixed.

Lemma 3.5 The intuitionistic fuzzy S^* structure space $\alpha'(S)$ is intuitionistic fuzzy S^* completely regular space.

Lemma 3.6 The intuitionistic fuzzy S^* structure space $\alpha'(S)$ is intuitionistic fuzzy S^* compact.

Proposition 3.2 For any intuitionistic fuzzy S^* completely regular space S, the intuitionistic fuzzy S^* structure space $\alpha'(S)$ coincides with the Cech extension $\beta(S)$ up to an intuitionistic fuzzy S^* homeomorphism leaving the members of S fixed.

The proof of Proposition 3.2 follows immediately from Lemmas 3.4 and 3.6 and the uniqueness of an maximal intuitionistic fuzzy S^* compact extension.

4.THE ALEKSANDROV-URYSOHN COMPACTNESS CRITERION

In this section the concept of intuitionistic fuzzy S^* absolute is applied to establish the Aleksandrov-Uryson compactness criterion:

Definition 4.1 Let (S_1, S_1^*) and (S_2, S_2^*) be two intuitionistic fuzzy S^* structure spaces. An function $f:(S_1, S_1^*) \rightarrow (S_2, S_2^*)$ of an intuitionistic fuzzy S^* structure space (S_1, S_1^*) onto an intuitionistic fuzzy S^* structure space (S_2, S_2^*) is an intuitionistic fuzzy S^* quotient function (or intuitionistic fuzzy S^* natural function) if, whenever V is an intuitionistic fuzzy S_1^* open set of (S_2, S_2^*) , $f^{-1}(V)$ is an intuitionistic fuzzy S_2^* open set in (S_1, S_1^*) and conversely.

Theorem 4.1 (Aleksandrov-Urysohn compactness criterion)

An intuitionistic fuzzy S^* Hausdorff space S is an intuitionistic fuzzy S^* compact space if and only if each of its intuitionistic fuzzy S^* closed subset is intuitionistic fuzzy S^*H closed.

Acknowledgement

The authors express their sincere thanks to the referees for their valuable comments regarding the improvement of the paper.

References

- 1. Atanassov.K, Intuitionstic fuzzy sets,in: V. Sgurev, Ed., VII ITKR's Session, Sofia (une 1983 Central Sci. and Techn. Library, Bulg. Academy of sciences, 1984).
- 2. K. Atanssov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- K Atanassov, Review and new results on intuitionistic fuzzy sets, Preprint IM-MFAIS 1-88, Sofia, 1988.
- 4. K. Atanassov and S. Stoeva, Intuitionistic fuzzy sets, in: Polish symp. On Internal & Fuzzy Mathematics, Poznan (August 1983), 23-26.
- 5. K. Atanassov and S. Stoeva, Intuitionistic L-fuzzy sets, in : R. Trappl, Ed., *Cybernetics and system Research*, Vol. 2 (Elsevier, Amsterdam, 1984), 539-540.
- 6. D. Coker, An introduction to intuitionistic fuzzy topological spaces, *Fuzzy Sets and Systems*, 88 (1997),81-89.

ALEKSANDROV URYSOHN COMPACTNESS...

- 7. Gurcay, H., Coker, D., and Haydar, Es. A., On fuzzy continuity in intuitionistic fuzzy topological spaces, *The J. fuzzy mathematics*, 1997, 365-378.
- 8. Iliadis. S, Fomin. S, The method of centered system in the theory of topological spaces, UMN, 21 (1996), 47 66.
- Rekha Srivastava, Lal S.N. and Arun.K.Srivastava, Fuzzy Hausdorff topological spaces, J. Math. Anal. Appl., 81(1981), 497 – 506.
- 10. Uma M.K., Roja.E and Balasubramanian.G, The method of centred systems in fuzzy topological spaces, The Journal of fuzzy mathematics, 15(4), 2007, 1 7.
- 11. L. A. Zadeh, Fuzzy sets, Inform and control, 8 (1965), 338-353.