On the Structure of Some Groups Containing $M_{9} w r M_{10}$

Basmah H Shafee
Department of Mathematics, Umm Al qura University, Makkah, KSA.
e-mail: dr.basmah_1391@hotmail.com

Abstract

In this paper, we will generate the wreath product $M_{9} w r M_{10}$ using only two permutations. Also, we will show the structure of some groups containing the wreath product $M_{9} w r M_{10}$. The structure of the groups founded is determined in terms of wreath product $\left(M_{9} w r M_{10}\right) w r C_{k}$. Some related cases are also included. Also, we will show that $S_{90 K+1}$ and $A_{90 K+1}$ can be generated using the wreath product $\left(M_{9} w r M_{10}\right) w r C_{k}$ and a transposition in $S_{90 K+1}$ and an element of order 3 in $A_{90 K+1}$. We will also show that $S_{90 K+1}$ and $A_{90 K+1}$ can be generated using the wreath product $M_{9} w r M_{10}$ and an element of order $k+1$.

1. INTRODUCTION

Hammas and Al-Amri [1], have shown that $A_{2 n+1}$ of degree $2 n+1$ can be generated using a copy of S_{n} and an element of order 3 in $A_{2 n+1}$. They also gave the symmetric generating set of Groups $A_{k n+1}$ and $S_{k n+1}$ using S_{n} [5].

Shafee [2] showed that the groups $A_{k n+1}$ and $S_{k n+1}$ can be generated using the wreath product $A_{m} \mathrm{wr} S_{a}$ and an element of order $k+1$. Also she showed how to generate $S_{k n+1}$ and $A_{k n+1}$ symmetrically using n elements each of order $k+1$.
Al-Amri and Eassa [6] have shown that the structure of some groups of degree9k containing M_{9}. They also shown that the the wreath product of the mathieu group M_{10} by some other groups [7] .

Al-Amri and Al-Shehri [3] have shown that $S_{9 k+1}$ and $A_{9 k+1}$ can be generated using the wreath product $M_{9} \mathrm{wr} C_{k}$ and an element of order 4 in $S_{9 k+1}$ and element of order 5 in $A_{9 k+1}$.

The Mathieu groups M_{9} and M_{10} are two groups of the well known simple groups. In [8], they are fully described. In a matter of fact, they can be faintly presented in different ways. They have presentations in $[6,7]$ as follows :

$$
\begin{gathered}
M_{9}=<X, Y \mid X^{4}=Y^{4}=[X, Y]^{2}=\left(Y X Y X^{3}\right)=1,\left[X,{ }^{2} X Y\right]=\left(X Y^{-2} X\right)> \\
M_{10}=<X, Y \mid X^{5}=Y^{4}=[X, Y]^{3}=(X Y X Y X)^{5}=\left(X Y^{2}\right)^{2}=1>
\end{gathered}
$$

M_{9} can be generated using two permutations, each of order 4 and an involution as follows $: M_{9}=<(1,2,3,4)(5,6,7,8),(1,2,5,9)(3,6,8,7)>$.
M_{10} can be generated using two permutations, the first is of order 5 and the second of order 4 as follow:

$$
M_{10}=<(1,2,3,4,5)(6,7,8,9,10),(1,7,4,9)(2,10,3,6)>
$$

On the Structure of Some Groups Containing $M_{9} w r M_{10}$

In this paper, we will generate the wreath product $M_{9} w r M_{10}$ using only two permutations. Also, we show the structure of some groups containing the wreath product $M_{9} w r M_{10}$. The structure of the groups founded is determined in terms of wreath product $\left(M_{9} w r M_{10}\right) w r C_{k}$. Some related cases are also included. Also, we will show that $S_{90 K+1}$ and $A_{90 K+1}$ can be generated using the wreath product $\left(M_{9} w r M_{10}\right) w r C_{k}$ and a transposition in $S_{90 K+1}$ and an element of order 3 in $A_{90 K+1}$. We will also show that $S_{90 K+1}$ and $A_{90 K+1}$ can be generated using the wreath product $M_{9} w r M_{10}$ and an element of order $k+1$.

Keywords and phrases: wreath product, Mathieu group.

2. PRELIMINARY RESULTS

DEFINITION 2.1. Let A and B be groups of permutations on non empty sets Ω_{1} and Ω_{2} respectively. The wreath product of A and B is denote by A wr B and defined as A wr $B=A^{\Omega{ }_{2}} \times_{\theta} B$, i.e., the direct product of $\left|\Omega_{2}\right|$ copies of A and a mapping \square where $\square \square: B \rightarrow \operatorname{Aut}\left(A^{\Omega_{2}}\right)$ is defined by $\square_{y}(x)=x^{y}$, for all $x \in A^{\Omega_{2}}$. It follows that $\mid A$ wr $B\left|=(|A|)^{\square}\right| B \mid$.

THEOREM 2.2 [4] Let G be the group generated by the n-cycle $(1,2, \ldots, n)$ and the 2 -cycle $(n$, a). If $1<a<n$ is an integer with $n=a m$, then $G \cong S_{m}$ wr C_{a}.

THEOREM 2.3 [4] Let $1 \leq a \neq b<n$ be any integers. Let n be an odd integer and let G be the group generated by the n-cycle $(1,2, \ldots, n)$ and the 3 -cycle (n, a, b). If the $h c f(n, a, b)=1$, then $G=A_{n}$. While if n can be an even then $G=S_{n}$.

THEOREM 2.4[4] Let $1 \leq a<n$ be any integer. Let $G=\langle(1,2, \ldots, n),(n, a)\rangle$. If h.c.f. $(n, a)=1$, then $G=S_{n}$.

THEOREM 2.5 [4] Let $1 \leq a \neq b<n$ be any integers. Let n be an even integer and let G be the group generated by the $(n-1)$-cycle $(1,2, \ldots, n-1)$ and 3-cycle (n, a, b). Then $G=A_{n}$.

3. THE RESULTS

THEOREM 3.1 The wreath product $M_{9} w r M_{10}$ can be generated using two permutations, the first is of order 90 and the second is of order 4.

Proof : Let $G=\langle X, Y\rangle$, where: $X=(1,2,3,4, \ldots, 90)$, which is a cycle of order $252, Y=(1,9)(2,6)(4$, $5)(7,8)(12,20,23,31)(13,17)(15,16)(18,19)(24,28)(26,27)(29,30)(34,42,56,64)(35,39)(37$, $38)(40,41)(45,53)(46,50)(48,49)(51,52)(57,61)(59,60)(62,63)(67,75)(68,72)(70,71)(73,74)$, which is the product of two cycles each of order 4 and twenty four transpositions. Let $\alpha_{1}=\left((X Y)^{6}[X, Y]^{5}\right)^{18}$. Then

$$
\alpha_{1}=(10,20,30,40,50,60,70,80,90)
$$

which is a cycle of order 9 . Let $\alpha_{2}=\alpha_{1}{ }^{-1} X$. It is easy to show that

$$
\alpha_{2}=(1,2,3, \ldots, 10)(11,12,13, \ldots, 20) \ldots(81,82,83, \ldots, 90),
$$

which is the product of seven cycles each of order 10. Let: $\beta_{1}=\left(Y^{2}\right)^{(X Y)^{18}}=(9,20)(12,23)(31$, 53)(34,56), $\beta_{2}=\beta_{1} Y^{-1}=(1,9,12,20)(2,6)(4,5)(7,8)(13,17)(15,16)(18,19)(23,31,45,53)(24$, $28)(26,27)(29,30)(34,42)(35,39)(37,38)(40,41)(46,50)(48,49)(51,52)(56,64)(57,61)(59,60)(62$, $63)(67,75)(68,72)(70,71)(73,74), \beta_{3}=\left(Y^{3} \beta_{2}\right)^{2}=(1,45)(12,23), \beta_{4}=\beta_{3}^{\left(\alpha_{2}^{-1} \alpha_{1}^{3}\right)}=(10,40)(50$, 60) and $\beta_{5}=\beta_{4}^{\beta_{3}^{\alpha_{2}^{-1}}}=(10,60)(40,50)$. Let $\alpha_{3}=\beta_{5}^{\beta_{3}^{\left(\alpha_{2}^{-1} \alpha_{1}\right)}}$. Hence

$$
\alpha_{3}=(10,20)(30,50) .
$$

Let $\alpha_{4}=Y X^{-1} \alpha_{3}^{-1} X$. We can conclude that

$$
\begin{aligned}
\alpha_{4}= & (1,9)(2,6)(4,5)(7,8)(12,20)(13,17)(15,16)(18,19)(23,31)(24,28)(26,27)(29,30)(34,42)(35,39) \\
& (37,38)(40,41)(45,53)(46,50)(48,49)(51,52)(56,64)(57,61)(59,60)(62,63)(67,75)(68,72)(70, \\
& 71)(73,74),
\end{aligned}
$$

which is the product of twenty eight transpositions. Let $K=\left\langle\alpha_{2}, \alpha_{4}\right\rangle$. Let $\theta: K \rightarrow M_{10}$ be the mapping defined by

$$
\theta(10 i+j)=j \quad \forall 1 \leq i \leq 8, \forall 1 \leq j \leq 10
$$

Since $\theta\left(\alpha_{2}\right)=(1,2, \ldots, 10)$ and $\theta\left(\alpha_{4}\right)=(1,9)(2,6)(4,5)(7,8)$, then $K \cong \theta(K)=M_{10}$. Let $H_{0}=\left\langle\alpha_{1}, \alpha_{3}\right\rangle$. Then $H_{0} \cong M_{9}$). Moreover, K conjugates H_{0} into H_{1}, H_{1} into H_{2} and so it conjugates H_{16} into H_{0}, where

$$
H_{i}=<(i, 10+i, 20+i, 30+i, 40+i, 50+i, 60+i, 70+i, 80+i)(i, 10+i)(20+i, 40+i)>
$$ $\forall 1 \leq i \leq 10$. Hence we get $\left.M_{9} w r M_{10}\right) \subseteq G$. On the other hand, since $X=\alpha_{1} \alpha_{2}$ and $Y=\alpha_{4} \alpha_{3}{ }^{X}$, then $G \subseteq M_{9} w r M_{10}$. Hence $G=M_{9} w r M_{10} \diamond$

THEOREM 3.2 The wreath product $\left(M_{9} w r M_{10}\right) w r C_{k}$ can be generated using two permutations, the first is of order $90 k$ and an involution, for all integers $k \geq 1$.

Proof : Let $\sigma=(1,2, \ldots, 90 k)$ and $\tau=(k, 9 k)(2 k, 6 k)(4 k, 5 k)(7 k, 8 k)(12 k, 20 k, 23 k, 31 k)(13 k$, $17 k)(15 k, 16 k)(18 k, 19 k)(24 k, 28 k)(26 k, 27 k)(29 k, 30 k)(34 k, 42 k, 56 k, 64 k)(35 k, 39 k)(37 k, 38 k)(40 k$, $41 k)(45 k, 53 k)(46 k, 50 k)(48 k, 49 k)(51 k, 52 k)(57 k, 61 k)(59 k, 60 k)(62 k, 63 k)(67 k, 75 k)(68 k, 72 k)(70 k$, $71 k)$. If $k=1$, then we get the group $M_{9} w r M_{10}$ which can be considered as the trivial wreath product $\left(M_{9} w r M_{10}\right) w r C_{k} \mathrm{wr}<\mathrm{id}>$. Assume that $k>1$. Let $\alpha=\prod_{i=0}^{10} \tau^{\sigma^{i k}}$, we get an element $\delta=\alpha^{45}=(k, 2 k, 3 k, \ldots, 90 k)$. Let $G_{i}=\left\langle\delta^{\sigma^{\mathrm{i}}}, \tau^{\sigma^{\mathrm{i}}}\right\rangle$, be the groups acts on the sets $\Gamma_{i}=\{\mathrm{i}, k+\mathrm{i}$, $2 k+\mathrm{i}, \ldots, 89 k+i\}$, for all $1 \leq i \leq k$. Since $\bigcap_{i=1}^{k} \Gamma_{i}=\varphi$, then we get the direct product $G_{1} \times G_{2} \times \ldots$ $\times G_{k}$, where, by theorem 3.1 each $G_{i} \cong M_{9} w r M_{10}$. Let $\beta=\delta^{-1} \sigma \square \square(1,2, \ldots, k)(k+1, k+2, \ldots$, $2 k) \ldots(89 k+1,89 k+2, \ldots, 90 k)$. Let $H=\langle\beta\rangle \cong C_{k} . H$ conjugates G_{1} into G_{2}, G_{2} into G_{3}, \ldots and G_{k} into G_{1}. Hence we get the wreath product $\left(M_{9} w r M_{10}\right) w r C_{K} \subseteq G$. On the other

On the Structure of Some Groups Containing $M_{9} w r M_{10}$

hand, since $\delta \beta=(1,2, \ldots, k, k+1, k+2, \ldots, 2 k, \ldots, 89 k+1,89 k+2, \ldots, 90 k)=\sigma$, then $\sigma \in\left(M_{9} w r M_{10}\right) w r C_{K}$. Hence $G=<\sigma, \tau>\cong\left(M_{9} w r M_{10}\right) w r C_{K} . \diamond$

THEOREM 3.3 The wreath product $\left(M_{9} w r M_{10}\right) w r S_{k}$ can be generated using three permutations, the first is of order $90 k$, the second and the third are involutions, for all $k \geq 2$.

Proof : Let $\sigma=(1,2, \ldots, 90 k), \tau=(k, 9 k)(2 k, 6 k)(4 k, 5 k)(7 k, 8 k)(12 k, 20 k, 23 k, 31 k)(13 k$, $17 k)(15 k, 16 k)(18 k, 19 k)(24 k, 28 k)(26 k, 27 k)(29 k, 30 k)(34 k, 42 k, 56 k, 64 k)(35 k, 39 k)(37 k, 38 k)(40 k$, $41 k)(45 k, 53 k)(46 k, 50 k)(48 k, 49 k)(51 k, 52 k)(57 k, 61 k)(59 k, 60 k)(62 k, 63 k)(67 k, 75 k)(68 k, 72 k)(70 k$, $71 k)$ and $\mu=(1,2)(k+1, k+2)(2 k+1,2 k+2) \ldots(89 k+1,89 k+2)$. Since by Theorem 3.2, $<\sigma, \tau>=\left(M_{9} w r M_{10}\right) w r C_{k}$ and $(1,2, \ldots, k)(k+1, k+2, \ldots, 2 k) \ldots(89 k+1, \ldots, 90 k) \in$ $\left(M_{9} w r M_{10}\right) w r C_{k} \quad$ then $\left.\quad\langle(1, \ldots, k)(k+1, \ldots, 2 k) \ldots(89 k+1, \ldots, 90 k) \square \square\rangle\right\rangle \quad \cong S_{k}$. Hence $G=\langle\sigma, \tau, \mu\rangle \cong\left(M_{9} w r M_{10}\right) w r S_{k} . \diamond$

COROLLARY 3.4 The wreath product $\left(M_{9} w r M_{10}\right) w r A_{k}$ can be generated using three permutations, the first is of order $90 k$, the second is an involution and the third is of order 3, for all odd integers $k \geq 3$.

THEOREM 3.5 The wreath product $\left(M_{9} w r M_{10}\right) w r\left(S_{m} w r C_{a}\right)$ can be generated using three permutations, the first is of order $90 k$, the second and the third are involutions, where $k=a m$ be any integer with $1<a<k$.

Proof : Let $\sigma=(1,2, \ldots, 90 k), \tau=(k, 9 k)(2 k, 6 k)(4 k, 5 k)(7 k, 8 k)(12 k, 20 k, 23 k, 31 k)(13 k$, $17 k)(15 k, 16 k)(18 k, 19 k)(24 k, 28 k)(26 k, 27 k)(29 k, 30 k)(34 k, 42 k, 56 k, 64 k)(35 k, 39 k)(37 k, 38 k)(40 k$, $41 k)(45 k, 53 k)(46 k, 50 k)(48 k, 49 k)(51 k, 52 k)(57 k, 61 k)(59 k, 60 k)(62 k, 63 k)(67 k, 75 k)(68 k, 72 k)(70 k$, $71 k)$ and $\mu \square=(k, a)(2 k, k+a)(3 k, 2 k+a) \ldots(90 k, 891 k+a)$. Since by Theorem 3.2, $<\sigma, \tau>\cong\left(M_{9} w r M_{10}\right) w r C_{k} \quad$ and $\quad(1, \ldots, \quad k)(k+1, \ldots, 2 k) \ldots(89 k+1, \ldots, 90 k) \in$ $\left(M_{9} w r M_{10}\right) w r C_{k}$ then

$$
\left\langle(1, \quad \ldots, \quad k)(k+1, \quad \ldots, \quad 2 k) \quad \ldots(89 k+1, \quad \ldots, \quad 90 k \square \square \mu\rangle \cong\left(S_{m} \mathrm{wr} C_{a}\right) .\right.
$$

Hence $G=\langle\sigma, \tau, \mu\rangle \cong\left(M_{9} w r M_{10}\right) w r\left(S_{m} w r C_{a}\right) . \diamond$

THEOREM 3.6 $S_{90 k+1}$ and $A_{90 k+1}$ can be generated using the wreath product $\left(M_{9} w r M_{10}\right) w r C_{k}$ and a transposition in $S_{132 k+1}$ for all integers $k>1$ and an element of order 3 in $A_{90 k+1}$ for all odd integers $k>1$.

Proof: Let $\sigma=(1,2, \ldots, 90 k), \tau=(k, 9 k)(2 k, 6 k)(4 k, 5 k)(7 k, 8 k)(12 k, 20 k, 23 k, 31 k)(13 k$, $17 k)(15 k, 16 k)(18 k, 19 k)(24 k, 28 k)(26 k, 27 k)(29 k, 30 k)(34 k, 42 k, 56 k, 64 k)(35 k, 39 k)(37 k, 38 k)(40 k$, $41 k)(45 k, 53 k)(46 k, 50 k)(48 k, 49 k)(51 k, 52 k)(57 k, 61 k)(59 k, 60 k)(62 k, 63 k)(67 k, 75 k)(68 k, 72 k)(70 k$, $71 k) \square \mu=(90 k+1,1)$ and $\mu^{\prime}=(1, k, 902 k+1)$ be four permutations, of order $90 k, 2,2$ and 3 respectively. Let $H=\langle\sigma, \tau\rangle$. By theorem 3.2 $H \cong\left(M_{9} w r M_{10}\right) w r C_{k}$.

Basmah H Shafee

Case 1: Let $G=\langle\sigma, \tau, \mu\rangle$. Let $\alpha=\sigma \mu$, then $\alpha=(1,2, \ldots, 90 k, 90 k+1)$ which is a cycle of order $90 k+1$. By theorem $2.4 G<\sigma, \tau, \mu^{\prime}>\cong<\alpha, \mu>\cong S_{90 k+1}$.
Case 2: Let $G=\left\langle\sigma, \tau, \mu^{\prime}\right\rangle$. By theorem $\left.2.5<\sigma, \mu^{\prime}\right\rangle \cong A_{90 k+1}$. Since τ is an even permutation, then $G \cong A_{90 k+1}$.

THEOREM 3.7 $S_{90 k+1}$ and $A_{90 k+1}$ can be generated using the wreath product $M_{9} w r M_{10}$ and an element of order $k+1$ in $S_{90 k+1}$ and $A_{90 k+1}$ for all integers $k \geq 1$.

Proof: Let $G=\langle\sigma, \tau, \mu\rangle$, where, $\sigma=(1,2,3, \ldots, 90)(90(k-(k-1))+1, \ldots, 90(k-(k-1))+90) \ldots$ $(90(k-1)+1, \ldots, 90(k-1)+132), \tau=(1,9)(2,6)(4,5)(7,8)(12,20,23,31)(13,17)(15,16)(18,19)(24$, $28)(26,27)(29,30)(34,42,56,64)(35,39)(37,38)(40,41)(45,53)(46,50)(48,49)(51,52)(57,61)(59$, $60)(62,63)(67,75)(68,72)(70,71)(73,74) \ldots(90(k-1)+1,90(k-1)+9) \ldots(90(k-1)+73,90(k-1)+74)$, and $\mu=(90,154, \ldots, 90 k, 90 k+1)$, where $k-i>0$, be three permutations of order 90,4 and $k+1$ respectively. Let $H=\langle\sigma, \tau\rangle$. Define the mapping θ as follows;

$$
\theta(10(k-i)+j)=j \quad \forall 1 \leq i \leq k, \forall 1 \leq j \leq 10
$$

Hence $H=<\sigma, \tau>\cong M_{9} w r M_{10}$. Let $\alpha=\mu \sigma$ it is easy to show that $\alpha=(1,2,3, \ldots, 90 k+1)$, which is a cycle of order $90 k+1$. Let $\mu^{\prime}=\mu^{\sigma}=(1,91, \ldots, 90(k-1)+1,90 k+1)$ and $\beta=\left[\mu, \mu^{\prime}\right]=(1,90,90 k+1) . \quad$ Since h.c.f $(1,90,90 k+1), \quad$ then by theorem 2.3 $G=\langle\sigma, \tau, \mu\rangle \cong\langle\alpha, \beta\rangle \cong S_{90 k+1}$ or $A_{90 k+1}$ depending on whether k is an odd or an even integer respectively. \diamond

References :

[1] A. M. Hammas and I. R. Al-Amri, Symmetric generating set of the alternating groups $\mathrm{A}_{2 \mathrm{n}+1}$, JKAU: Educ. Sci., 7 (1994), 3-7.
[2] B. A. Shafee, Symmetric generating set of the groups $A_{k n+1}$ and $S_{k n+1}$ using th the wreath product A_{m} wr S_{a}, Far East Journal of Math. Sci. (FJMS), 28(3) (2008), 707-711.
[3] H. A. AL-Shehri and I. A. Al-Amri, Symmetric and permutational generating sets of $S_{9 k+1}$ and $A_{9 k+1}$ using the wreath product $M_{9} \mathrm{wr} C_{k}$, Far East J. Mathe. Sci. (FJMS), 31(2) (2008), 227-235.
[4] I.R. Al-Amri, Computational methods in permutation groups, ph.D Thesis, University of St. Andrews, September 1992.
[5] I.R. Al-Amri, and A.M. Hammas, Symmetric generating set of Groups $A_{k n+1}$ and $S_{k n+1}$, JKAU:
Sci., 7 (1995), 111-115.
[6] I.R. Al-Amri, and A.A. Eassa, On the Structure of some groups of degree9k containing M_{9}, Journal of Natural Sciences and Mathematics Qssim University, (2007), 82-85.
[7] I.R. Al-Amri, and A.A. Eassa, On the wreath product of the mathieu group M_{10} by some other groups, Journal of Taibah University for Science (JTUSCI), (2008), 72-75.
[8] J. H. Conway and others, Atlas of Finite Groups, Oxford Univ. Press, New York, 1985.

