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Abstract 
We obtain the equilibrium of an solutions of an R-out-of-N system subject to random breakdown. 

These are M spares and a single repair, Who installs good spares into the system when breakdowns occurs 
and also repairs the failed items. For example, Single Channel Peak Current—In outside-out patches, the 
rapid application of high GABA concentrations [GABA] invariably induced overlapping single channel 
openings whose maximum peak current was reached within 20 ms of the application. The single channel 
peak current for each [GABA]  (1, 10,100,and 1000 µM) was therefore determined as the peak amplitude 
of the current induced within the first 20 ms. Themeanpeak current was obtained by pooling data from 
three or more experiments. We have utilized these formulae in the application part for the variable 
GABA.In this paper we they to find out the time resolution of these rapid transitions from closed to open 
for both the 30-pS channels and 60-pS channels in the medical part.  
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1.Introduction 

We consider a system of N identical components subject to random breakdown at rate λ per operational 
machine. The system is supposed to work provided at most K components are down ,i.e. if at least N-K components 
are operational (an (N-K) – out-of-N-system). We assume a fixed number of spares, M, are available. When a 
component fails it must be removed from the system , replaced by a good spare and repaired to good –as-new state 
to become part of the stock of good spares. This is done by a single service facility which gives per-emptive priority 
to the replacement activity. Thus,if breakdown occurs while a repair is in progress, the server immediately stops 
repairing and instead removes the faulty component and replaces it by a good spare, if one is a vailable; if no good 
spare is available the repair must be completed and then the repaired item may be installed into the system instead of 
the failed component.  The installation and repair times are assumed to be random variables from distributions with 
probability densities f1(x) and f2(x) respectively, with corresponding hazards λ1(x), λ2(x), and survivor functions 
R1(x), R2(x). Thus for i =1,2 we have fi(x) =  λi(x) Ri(x)  , where  ,  Ri(x) = exp (-� ��������

	 �                                

The series system, K=0, was studied under both repeat and resume assumptions. We consider the general 
case 0 < K < N. We start by assuming at least one spare , M 1, and later study the special case of no spares, M=0. 

 At any point in time the system may be considered to be in one of (K+2)(M+1) states in the particular case 
K=1, M=2. Let d be the total number of defective items (these may be in the system waiting to be replaced or held in 
stock waiting to be repaired) and let g be the number of good spares available. Then , g + d = M + k         , so 
, d – k = M – g = r , say.               

 We choose to lable the states of the model by the pairs (k, r), through the above equations show that various 
other combinations are possible. 
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Example: 

 Consider a system consisting of n components such that the failure of the ith component occurs in 
accordance with a poisson process of intensity ai. To find the reliability of the k-out of n system. Here Ti,is 
exponential with mean 1/ai, and Ri(t) = e -ait

   . 

  

 Suppose that ai = a for all i. we have, R(t)  = Pr (T> t)   
              = 
 ����

��  (e –ait )r(1- e –ait)n-r 

   E(T) = � ������∞
	  =�� 
 ����

��
∞
	   (e –ait )r(1- e –ait)n-rdt 

           = ��

��

������
�
��

�����������
������  

           =  ��

�


�
��  

2.Solutions with at least one spare 

  In general, we shall need to consider the elapsed replacement time. ��� , or the elapsed repaire time,���� , at 
time t as well as the currently occupied state ( ��� ,  ��), where the tilde indicates a random variable. It is possible to 
write down partial differential equations involving the probability distribution of these variables as a function t. 
However, we shall content ourselves with finding equilibrium solutions, which can be obtained by direct 
probabilistic arguments,t will, therefore, be omitted from the notation. Then most general quantity of interest is a 
probability density involving the lapsed installation time ��� :  

p k,r(x) = !"#
$�%	

 P((��� =k) &�( ��=r)  (��� '(x, x+(�))) / (�)     0 < k�* K+1, 0�* r < M.           

Down the rightmost diagonal repairs are in progress, because there are no good spares left to install, so 

p k,m(y) = !"#
$+%	

 P((��� =k) &�( ��=M)  (��� '(y, y+(�))) / (�)  for 0�* k�* K+1                       

This leaves us with one special state, (0,0), in which everything is good and so there is no installation and no repair 
in progress. Then we define 

     p0,0 =  P( (���  = 0) ( ��= 0)).          
Along the bottom row of the state diagram the system is down, the system is up (available) in any other state.In 
order to develop equilibrium balancing equations, it is useful to define  

bQn(x) = P(b breakdowns out of n items over time interval x ) 

               = ,-./exp( - (n- b) λx))(1- exp(- λx))b.            (Eq.1)            

This is simply a binomial probability with probability of failure given by the negative exponential distribution, as in 
a simple death process. If we take x in the above expression as a random variable with probability density f, then the 
probability of b failures out of n items over a random period will be denoted by  

   b(0AQ)n= � .∞
	  Q n (x)�0(x)dx        

which, by expanding Equation (8), can be written as 

   b(0AQ)n=�,-./ 
 ,.1 /�
2
��	   (-1)I��0*((n-b+i) λ),  

where ,         0*(s) = � 3∞
	  -sx�0(x)dx                                                                 

is the Laplace transform of  the density 0.  

In  particular, the probability of no events is,      0(0AQ)n = 0*(n λ).                                  

Then the most general result on installation is 
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                  Pk,r(x) =  
 4�
5�� j,r(0)k-j QN - j(x)R1(x), 1* � * 6)���7 *  * 8 9 :;            

 
Thus the installation may have started at time x ago in state (j, r), with density Pj,r(0), is still not complete 
(probability R1(x)), and there have been k - j breakdowns out of the original N – j which were working when 
installation began. As breakdowns occur, the system slides down the rth diagonal. When the bottom row is reached 
no more failures can occur, because the system stops working, and so 
             PK + 1,r(x) = 
 4�

5�� j,r(0) (1 - 
 <��5
2�	 QN-j(x) R1(x)+PK +1,r(0)R1(x),  0 r* 8 9 :;  

 

For the repairs down the rightmost diagonal we have   

                Pk,M(y) = 
 4�
5�	 j,M(0)k- j QN-j(y) R2(y), 0 k K.              

 
Notice that, in comparison to Equation (2.10), the summation starts at j=0 because, unlike installations, repairs can 
start in the top row. Again, k= K+1 is special: 
  

 PK+1,M(y) = 
 4�
5�	  j,M (0)(1 -
 ;��5

2�	  bQN-j(y) R2 (y).     
           
Note that it is impossible to start a repair in state (K+1, M) so that PK+1,M (0) = 0 
Along the top row the repairs in progress satisfy 
 
             po,r (y) = po,r(0) exp(-Nλy) R2(y) = po,r(0)0QN(y)R2(y),                          1 r M.            
 

Finally, by equating the rates of transition out of and into the special state (0,0) we have  

  Nλp0,0 =  � 4∞
	 0,1(y) λ2 (y)dy = po,1 (0)0  (f2 AQ)N = po,1 (0) f2* (Nλ)                         

Thus  the solution depends on the initial densities pk,r (0) which give  the rates at which installations or repairs being 
in the various states. These may be found by solving the following set of boundary equations governing the 
transitions between the states. In these equations we need to use the result that, using integration by parts, 

          � 3�=��∞
	  (x) dx = (1 - f*(s))/s                 

 The effect of different shape distributions for the times taken to install and to repair items. In both cases we 
take gamma densities of the form  
                              f(t) = (α/>)α t α-1exp(- αt/>)/Γ(α) ,  t>0 

For this distribution > is the mean and α the shape parameter : included in this family is the exponential distribution, 
α = 1, and the constant distribution, α x. From these results we see that the availability is not very sensitive to the 
form of the density, especially the installation time distribution which has a small mean, increasing a little as the 
shape parameter increases and, therefore, the variability decreases. There is some difference when the repair time 
distribution is j-shaped, α2  <1, but these is very little change when α2 excceeds 1. The effect of the shape of the 
repair time distribution decreases as M increases but increases, slightly, as K increases. 

3.Applications 
 

    Inhibitory signals in human brains are mediated primarily by γ-aminobutyric acid typeA (GABAA)2 
receptors. These ligandgated ion channels are composed of multimembrane-spanning subunits that assemble into 
pentamers and function by gating a pore selective for chloride ions. The targeting and organization of GABAA 
receptors at specific membrane locations are critical for their normal function. For example, GABAA receptors are 
clustered at inhibitory synapses but are also found both clustered and nonclustered at other sites on the neuronal cell 
surface (3). These synaptic and nonsynaptic (extrasynaptic) sites reflect GABAA receptor involvement in both 
phasic and tonic signaling, respectively. The functional behavior of native GABAA receptors is complex. Much of 
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the receptor’s functional complexity has been attributed to its extensive structural heterogeneity as indicated by the 
19 different genes identified to date      (α1–6, β1–3, γ1–3, δ, ρ1–3, ℰ, θ, and π). 

 
4. Mathematical Model for Experimental Procedures 
 

Analysis of Currents—All single channel currents were analyzed using in-house software, CHANNEL 2. 
Statistical analyses were performed using Excel (Microsoft). To compare sample means, paired or unpaired, a 
twotailed  t test, not assuming equal variance, was used.A critical value of p<0.05 was used to define statistical 
significance. 

Single Channel Analysis—All single channel recordings were performed at a holding potential of - 60 mV 
using the outsideout patch clamp technique. Before analysis, the recordings were filtered at 2 kHz using the program 
CHANNEL 2, unless specified (e.g. mean open times). Single channel current amplitudes were measured directly 
and were only accepted as valid events if their open duration was at least 0.3 ms (i.e. 3 times the sampling rate). 
Amplitude histograms were then constructed using more than 500 openings in which the bin widths were 0.06 pA, 
and these were subsequently fitted to the sum of Gaussian components (Equation 2) using least-squares 
minimization. The number of Gaussian components required to fit the histogram was determined by the criteria set 
out by (4). The Gaussian function (g(I)) used to fit an amplitude frequency histogram was as follows. 
 
g(I) = A1e

-0.5 ��@�AB
=B

��C + A2e
-0.5 ��@�AD

=D
��C +……+ Ane

-0.5 ��@�AE
=E

��C                                 (Eq. 2) 

 
Single Channel Peak Current—In outside-out patches, the rapid application of high GABA concentrations 

([GABA]) invariably induced overlapping single channel openings whose maximum peak current was reached 
within 20 ms of the application. The single channel peak current for each [GABA] (1, 10, 100, and 1000 µM) was 
therefore determined as the peak amplitude of the current induced within the first 20 ms. Themeanpeak current was 
obtained by pooling data from three or more experiments. 

Single Channel Mean Open Time—Unfiltered segments of typical single channel data were used for 
analysis only if simultaneous openings were rare or accounted for less than 1% of the total number of channel 
openings sampled. Using a program available in CHANNEL 2, the single channel amplitudes and their 
corresponding open duration can be measured automatically,after an “open” and “closed” threshold has been set. To 
determine the open time of single channel events that were ≤ 40 pS, the open and closed thresholds were set at half 
the amplitude of the smallest single channel conductance, typically 20 pS; hence, the threshold was set at 10 pS. At a 
holding potential of - 60 mV, this threshold was set at 0.6 pA. Using the same criteria to determine the open time of 
single channel events that had conductances greater than 40 pS, the open and closed thresholds were set at 1.2 pA. In 
single channel recordings that exhibited both high and low single channel conductance events, the open times of 
these channel events were sampled twice. The first round was to collect the open times of the low conducting 
channels  (≤ 40 pS), and the second was for the high conducting channels (>40 pS). This procedure was done 
because it was found that a number of the high conducting channels had brief closures (it was considered a closed 
event when the channel closed more than half the amplitude of that channel opening). These closures, however, did 
not cross the “lower” closed threshold set at 0.6 pA and was therefore deemed to be a single open event by the 
analysis program. Under these conditions, the mean open time of the higher conducting channels was biased toward 
longer times.  
Probability of Simultaneous, Independent Channel Openings— To determine whether high conductance channels 
could be due to the random simultaneous openings of independent channels, the probability of observing rapid 
transitions between the closed level and Imax(maximumsingle channel current) were calculated. We calculated 
whether the 60-pS conductances were due to the simultaneous openings of two 30-pS independent channel 
openings, because the 30-pS channels account for more than 50% of all opening events. Furthermore, the low 
frequencies of the 20- and 40-pS channels make their random participation in generating a 60-pS channel less likely. 

The probability of n independent channels opening simultaneously can be examined by a binomial 
distribution. 

 
Pr(s) = [n! / s!(n - s)! ] po

2  (1 - po)
n-s      

       
The probability that two channels open simultaneously (s = 2) thus becomes the following. 

 
Pr(s = 2) = n! / [2!(n - 2)!] Po 

2(1 - po)
n-2 =[n(n - 1) / 2] po

2(1 - po)
n-2             
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Since (1 - po)

n-2 < 1, then 
 
Pr(s = 2) <  [n(n-1)/ 2]po

2           
 
Since n2 - n < n2, then the following is true 

 
Pr(s = 2) < (npo)

2 /2                     Digram A                                                        
Digram B                                 

                         
 
Digram. Single channel opening transitions. These single channel traces are from a patch (P2) co-expressing αβγ 
receptors and GABARAP that displayed 60-pS channel openings more than 50% of the time.  30 s of channel 
activity from an outside-out patch activated by 100 µM GABA. On an expanded time scale, transitions to the 30- 
and 60-pS open states are depicted in A and B, respectively, illustrating that the fast transitions to each conductance 
occur within 400µs. Recordings were filtered at 5 kHz and sampled at a frequency of 10 kHz (hence, each data point 
represents 100µ s). Membrane potential was -60 mV. 
From our single channel recordings, npo can be calculated as follows. 

nPo =  (x1 +2x2) / Tr          
 
where x1 is the number of 30-pS channel openings, x2 is the number of 60-pS channel openings, and Tr is the 
number of rapid transition periods in that particular recording. 

Single channels go from the closed state to an open state in a very short space of time. With our current 
sampling resolution, one point per 100µs (10 kHz), we have found that channels take less than four points to go 
from a closed state to an open state. Thus, this rapid transition from channel closed to channel open takes less than 
400 µs and therefore is defined as our rapid transition period. In a 30-s recording, there are 75,000 rapid transition 
periods           (Tr = 30s/400µs). A typical single channel recording is depicted in Digram from a cell coexpressing 
GABAA receptors and GABARAP. The digram illustrates the time resolution of these rapid transitions from closed 
to open for both the 30-pS channels (Dig.A) and the 60-pS channels (Dig.B), where each data point represents 100 
µs. 
5. Results 

    Digram A (i) α =5.5152   > =0.204    (ii) α =5.5152      > =0.897 

                 

   Digram B (i) α =2.0881 > =0.2158              (ii) α =1.9621     > =0.4328 
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                                           Conclusion 

From these results we see that the availability is not very sensitive to the form of the density, especially the 
installation time distribution which has a small mean, increasing a little as the shape parameter increases and, 
therefore, the variability decreases. There is some difference when the repair time distribution is j-shaped. The effect 
of the shape of the repair time distribution decreases as M increases but increases, slightly, as K increases. The 
digram illustrates the time resolution of these rapid transitions from closed to open for both the 30-pS channels 
(Dig.A) and the 60-pS channels (Dig.B), where each data point represents 100 µs. This model is used for finding the 
concluding remark in the medical science for the variable GABA. The Gaussian function (g(I)) is used to fit the 
amplitude frequency. 
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