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Abstract

The aim of this paper is to develop the implicit finite difference scheme for
space fractional diffusion equation with initial and boundary conditions. We
also prove the scheme is unconditionally stable and convergent. Also, as an
application of this scheme, the numerical solution for space fractional diffusion
equation is obtained and represented graphically by Mathematica software.
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1 INTRODUCTION

The fractional differential equations play a pivotal role in the modeling of number
of physical phenomenon [1, 2]. The applications of such include damping laws, fluid
mechanics, viscoelasticity, biology, physics, hydrology, engineering, finance, modeling
of earth quakes etc.,[5, 12, 13]. One of the most important applications that has
been rigorously and extensively studied is to describe the sub-diffusion and super-
diffusion process [3, 6, 9, 11]. A mathematical approach to model such anomalous
diffusion phenomena is based on generalized diffusion equation containing derivatives
of fractional order in space or time or space-time. But due to the complexities of
the physical nature of the problem, obtaining an exact solution becomes almost im-
possible. Also, most of the analytical methods used so far, encounter some inbuilt
deficiencies and are not compatible with the true physical nature of these problems.
Hence, approximation and numerical techniques must be used, as the numerical re-
sults reveal the complete reliability of the proposed algorithms [4, 14, 15, 18]. Based
on these, our main purpose of this paper is to develop the space fractional implicit
finite difference scheme for diffusion equation of fractional order [7, 8, 10, 17]. The
model IBVP for space fractional heat transfer equation is given as,

∂U(x, t)

∂t
= D

∂βU(x, t)

∂xβ
, 0 < x < L, 1 < β ≤ 2, t > 0

initial condition : U(x, 0) = ϕ(x), 0 ≤ x ≤ L
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boundary conditions : U(0, t) = 0 and U(L, t) = 0 0 ≤ t ≤ T

where diffusion coefficient D > 0.
We consider the following definition of fractional derivative which is useful for our
further developments.

Definition 1.1 The Grunwald-Letnikov space fractional derivative of order β, (1 <
β ≤ 2) is defined as follows [10, 12, 13]

∂βU(x, t)

∂xβ
=

1

Γ(−β)
lim

N→∞

1

hβ

N∑
j=0

Γ(j − β)

Γ(j + 1)
U(x− (j − 1)h, t)

where Γ(.) is the gamma function.

The paper is organised as follows: The implicit discrete approximation scheme for the
space fractional diffusion equation is developed in sec 2. The unconditional stability
of the solution is proved in section 3 and the concept of convergence of the scheme
is discussed in section 4. We obtain the 3-D graphics of the approximate solution by
the programming language Mathematica, followed by concluding remarks, in the last
section.

2 SPACE FRACTIONAL FINITE DIFFERENCE SCHEME

We consider the space fractional diffusion equation with initial and boundary condi-
tions as follows

∂U(x, t)

∂t
= D

∂βU(x, t)

∂xβ
, t > 0, 0 ≤ x ≤ L, 1 < β ≤ 2, (2.1)

initial condition : U(x, 0) = ϕ(x), 0 ≤ x ≤ L (2.2)

boundary conditions : U(0, t) = 0 and U(L, t) = 0 0 ≤ t ≤ T (2.3)

where D is the diffusivity constant. Now, for the implicit numerical approximation
scheme, we first discretize the domain into a fine grid of equal rectangles of sides
δx = h and δt = τ . That is, we define δx = h = L

N
and δt = τ = T

N
, the space

and time steps respectively such that tk = kτ ; 0 ≤ tk ≤ T ; k = 0, 1, 2...N be the
integration time and xi = xL + ih for i = 0, 1, 2...N . We define Uk

i = U(xi, tk) and
let Uk

i denote the numerical approximation to the exact solution U(xi, tk). In the
partial differential equation (2.1), we discretize the spatial β-order fractional deriva-
tive using the Grünwald finite difference formula at all time levels. The standard
Grünwald estimate generally yields unstable finite difference equation regardless of
whatever result in finite difference method is an explicit or an implicit system for
related discussion [10, 13]. Therefore, we use a right shifted Grünwald formula to
estimate the spatial β-order fractional derivative.

∂βU(x, t)

∂xβ
=

1

Γ(−β)
lim

N→∞

1

hβ

N∑
j=0

Γ(j − β)

Γ(j + 1)
U(x− (j − 1)h, t)
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where N is the positive integer and Γ(.) is the gamma function. We also define the
normalized Grünwald weights by

gβ,j =
Γ(j − β)

Γ(−β)Γ(j + 1)
, j = 0, 1, ...

Using the right shifted Grünwald formula, the implicit type numerical approximation
to equation (2.1), we get

Uk+1
i − Uk

i

τ
= D δβ,x Uk+1

i

where the above fractional partial differential operator is defined as

δβ,xU
k
i =

1

hβ

i+1∑
j=0

gβ,jU
k
i−j+1

which is an O(hβ) approximation to the β-order fractional derivative. Therefore, the
fractional approximated equation is,

Uk+1
i − Uk

i

τ
=

D

hβ

i+1∑
j=0

gβ,jU
k+1
i−j+1

By setting Dτ
hβ = r, the above equation is,

⇒ (1− rgβ,1)U
k+1
i − r

i+1∑
j=0,j ̸=1

gβ,jU
k+1
i−j+1 = Uk

i , i = 1, ...N

For k = 0, we get

(1− rgβ,1)U
1
i − r

i+1∑
j=0,j ̸=1

gβ,jU
1
i−j+1 = U0

i , i = 1, ...N.

The initial condition is approximated as U0
i = ϕ(ih); i = 1, 2...N and the bound-

ary conditions are approximated as Uk
0 = 0 and Uk

L = 0. Therefore, the fractional
approximated IBVP is

(1− rgβ,1)U
1
i − r

i+1∑
j=0,j ̸=1

gβ,jU
1
i−j+1 = U0

i , for k = 0 (2.4)

(1− rgβ,1)U
k+1
i − r

i+1∑
j=0,j ̸=1

gβ,jU
k+1
i−j+1 = Uk

i , for k ≥ 1 (2.5)

initial condition : U0
i = ϕ(ih); i = 1, 2...N (2.6)

boundary conditions : Uk
0 = 0 and Uk

L = 0 (2.7)
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where r = D τ
hβ .

Therefore, for i = 1, 2, ...N−1, from the above equations, the fractional approximated
IBVP (2.4) to (2.7) can be written in the following matrix equation form

AUk+1 = Uk (2.8)

where Uk = (Uk
1 , U

k
2 , ..., U

k
N−1)

T and A = (aij) is a square matrix of coefficients of
order N-1. For i = 1, 2, ..., N − 1, j = 1, 2, ...., N − 1 the coefficients are

aij =


0, when j ≥ i+ 2

−rg0, when j = i+ 1
1− rg1, when j = i = 1, 2, 3, ....,

−rgj, otherwise j = 2, 3, 4, ...., N − 1

(2.9)

where r = Dτ
hβ , gβ,j =

Γ(j−β)
Γ(−β)Γ(j+1)

. The above system of algebraic equations is solved
by using Mathematica software in the last section.
In the next section, we discuss the stability of the solution of space fractional implicit
finite difference scheme (2.4)− (2.7) for the space fractional diffusion equation (2.1)−
(2.3).

3 STABILITY

This section is devoted for the stability of the fractional implicit finite difference
scheme (2.4)− (2.7) for the space fractional diffusion equation (2.1)− (2.3).
Lemma 3.1: If λj(A), j = 1, 2, ..., N − 1 represent eigenvalues of matrix A then we
prove the following results:
(i) |λj(A)| > 1, j = 1, 2, ... , N-1.
(ii) ∥A−1∥2 ≤ 1
Proof: The Gerschgorin theorem states that each eigenvalue λ of a square matrix A
is in at least one of the following disk

|λ− ajj| ≤
N−1∑

l=1,l ̸=j

alj, j = 1, 2, ..., N − 1. (3.1)

Therefore, each eigenvalue λ of matrix A satisfies at least one of the following in-
equalities:

|λ| ≤ |λ− ajj|+
N−1∑

l=1,l ̸=j

|alj| ≤
N−1∑
l=1

|alj| (3.2)

|λ| ≥ |ajj| − |λ− ajj| ≥ |ajj| −
N−1∑

l=1,l ̸=j

|alj| (3.3)
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To prove (i), we use equation (3.3) to matrix A, then each eigenvalue λ of matrix A
satisfies the following inequality.

|λ1(A)| ≥ |1− rg1| − |−rg0|
≥ 1− rg1 − rg0

≥ 1− r(g0 + g1) > 1, (since r(g0 + g1) < 0)

|λ1(A)| > 1,

|λ2(A)| ≥ |1− rg1| − |−rg2 − rg0|
≥ 1− rg1 − (rg2 + rg0)

≥ 1− r(g0 + g1 + g2) > 1, (since r(g0 + g1 + g2) < 0)

· · ·
|λN−1(A)| ≥ |1− rg1| − |−rgN−1 − rgN−2...− rg2|

≥ 1− r(gN−1 + gN−2 + ...+ g2 + g1) > 1

|λN−1(A)| > 1

Therefore, this proves |λj(A)| > 1, j = 1, 2, ... , N-1.
To prove (ii), we have ∥A∥2 = max

1≤j≤N−1
|λj(A)| > 1

∥A−1∥2 ≤
1

|λj(A)|
≤ 1

Theorem 3.1 The solution of the fractional approximated IBVP (2.4)− (2.7) is un-
conditionally stable.

Proof: To prove that the above scheme is unconditionally stable.
We must show that ∥Uk∥2 ≤ ∥U0∥2 for k ≥ 1.
From the equation (2.8), we have

AUk = Uk−1, k = 1, 2, ... (3.4)

Clearly, matrix A is invertible. Now for k = 1, 2, ..., from equation (3.4), we get

AU1 = U0

U1 = A−1U0

AU2 = U1

U2 = A−1U1

= A−1(A−1U0)

U2 = (A−1)2U0

...

Uk = (A−1)kU0, n ≥ 1 (3.5)
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From equation (3.5), we get

∥Uk∥2 ≤ ∥A−1∥k2∥U0∥2, (By lemma 3.1, ∥A−1∥2 ≤ 1)

∥Uk∥2 ≤ ∥U0∥2

This shows that the finite difference scheme for fractional equation is unconditionally
stable.
Hence the proof is completed.

4 CONVERGENCE

We now discuss the convergence of the finite difference scheme. Consider the vector
U⃗n = [U(x0, tn), ..., U(xi, tn), ..., U(xN , tn)]

T which represents the exact solution at
time level tn, whose size is N. The finite difference scheme (3.4) will become

AU⃗n = U⃗n−1 + τn, n = 1, 2, .... (4.1)

where τn is the vector of the truncation errors at level tn.

Theorem 4.1 The fractional order finite difference scheme (2.4) − (2.7) for space
fractional diffusion equation is convergent.

Proof: If we subtract (3.4) from (4.1), we get

A(U⃗n − Un) = (U⃗n−1 − Un−1) + τn (4.2)

Consider the error vector, En = U⃗n − Un, then from equation (4.2), we get

A En = En−1 + τn (4.3)

In equation (4.3), putting n = 1, 2, ..., we get

A E1 = E0 + τ 1

E1 = A−1 E0 + A−1τ 1

A E2 = E1 + τ 2

E2 = A−1 E1 + A−1τ 2

= A−1[A−1E0 + A−1τ 1] + A−1τ 2

= (A−1)2E0 + A−1[A−1τ 1 + τ 2]

...

En = (A−1)n E0 + A−1

n−1∑
k=0

(A−1)k τn−k (4.4)
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We take U0 = U⃗0, then E0 = 0 is a zero vector, then from (4.4), we get

∥En∥2 ≤ ∥A−1∥2(
n−1∑
k=0

∥A−1∥k2) . max
1≤M≤n

∥τM∥2 (4.5)

Since by Lemma (3.1), ∥A−1∥2 ≤ 1 and lim
(h,τ)→(0,0)

∥τM∥2 = 0, (1 ≤ M ≤ n)

Therefore, from equation (4.5), we get

∥En∥2 → 0, as (h, τ) → (0, 0)

. Hence, the proof.

5 NUMERICAL SOLUTIONS

In this section, we obtain the approximated solution of space fractional diffusion
equation with initial and boundary conditions. To obtain the numerical solution of
the space fractional diffusion equation by the finite difference scheme, it is important
to use some analytical model. Therefore, we present an example to demonstrate that
the implicit finite difference scheme can be applied to simulate behavior of a fractional
diffusion equation by using Mathematica software. We consider the following, one-
dimensional space fractional diffusion equation with suitable initial and boundary
boundary conditions

∂U(x, t)

∂t
=

∂βU(x, t)

∂xβ
0 < x < 1, 1 < β ≤ 2, t > 0

initial condition : U(x, 0) = (x− 1)3 ∗ x3, 0 ≤ x ≤ 1

boundary conditions : U(0, t) = 0, and U(1, t) = 0

with the diffusion coefficient D = 1.
The numerical solution obtained at t = 0.05 by considering the parameters τ = 0.005,
h = 0.1, β = 1.7 is simulated in the following figure.
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Fig.5.1 : The exact diffusion profile withparameters t = 0.05, h = 0.1, β = 1.7

Fig.5.2 : The numerical diffusion profile with parameters t = 0.05, h = 0.1, β = 1.7
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CONCLUSIONS
(i) We developed the fractional order finite difference scheme for space fractional

diffusion equation.
(ii) The numerical example is analyzed to show that the numerical results are in good

agreement with theoretical analysis.
(iii) The fractional order implicit finite difference scheme is numerically stable.
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