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ABSTRACT 

 

 In this paper the concept of fuzzy locally b-closed sets is introduced and its inter relations with other 

types of locally closed sets are studied with suitable counter examples. Equivalently the inter relations of 

fuzzy locally b-continuous functions with other types of fuzzy locally continuous functions are discussed with 

necessary counter examples.  Also the concepts of fuzzy locally b-compact spaces, fuzzy locally b-Lindelof 

spaces and fuzzy locally b-closed compact spaces are introduced and some of their charecterizations and 

properties are established.  
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1. INTRODUCTION AND PRELIMINARIES 

1.1  Introduction  

 The concept of fuzzy sets was introduced by Zadeh [11] in his classical paper.  Fuzzy sets have 

applications in many fields such as information [9] and control [10]. The first step of locally closedness was 

done by Bourbaki [5].  Ganster and Reilly used locally closed sets in [8] to define Lc - continuity and Lc - 

compactness.  The concepts of r - fuzzy G -
~

g -locally closed sets and fuzzy G -
~

g -locally continuous 

functions were studied by Amudhambigai, Uma and Roja [1]. The concepts of fuzzy slightly β-continuity, fuzzy 

β-Lindelof, fuzzy mildly compact and fuzzy countably β-closed compact were introduced by Erdal Ekici [7]. In 

this paper the concept of fuzzy locally b-closed sets is introduced and its inter relations with other types of 

locally closed sets are studied with suitable counter examples. Equivalently the inter relations of fuzzy locally b-

continuous functions with other types of fuzzy locally continuous functions are discussed with necessary 

counter examples.  Also the concepts of fuzzy locally b-compact spaces, fuzzy locally b-Lindelof spaces and 
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fuzzy locally b-closed compact spaces are introduced and some of their charecterizations and properties are 

established.  

1.2  PRELIMINARIES 

Definition : 1.2.2 [2,6] A fuzzy topological space ( X, T ) is said to be fuzzy compact if every fuzzy open cover 

of ( X, T ) has a finite subcover.  

Definition : 1.2.4 [4] Any    
I

X
 in a fuzzy topological space ( X, T ) is said to be a  

(i) fuzzy  -closed set ( briefly, F -cls ) if     cl ( int ( cl ( ) )  

(ii) fuzzy pre-closed set ( briefly, Fp-cls ) if     cl ( int ( ) ).   

(iii) fuzzy semi-closed set ( briefly, Fs-cls ) if     int ( cl ( ) ).  

Definition : 1.2.7 [3] Any fuzzy set    
I

X
 in a fuzzy topological space ( X, T ) is said to be a fuzzy b-closed 

set ( briefly, Fb-cls ) if     cl ( int ( ) )  int ( cl ( ) ).   

Definition : 1.2.8 [6] Let ( X, T ) and ( Y, S ) be any two fuzzy topological spaces. Any function f : ( X, T )   

( Y, S ) is said to be a fuzzy continuous function if  
1f ( ) is fuzzy open in ( X, T ) for each fuzzy open set 

  in ( Y, S ).   

Definition : 1.2.9 [7] A fuzzy topological space ( X, T ) is said to be  fuzzy  -compact if every fuzzy 

-open cover of ( X, T ) has a finite subcover. 

(a) fuzzy countably  -compact if every fuzzy  -open countably cover of ( X, T ) has a finite subcover. 

(b) fuzzy  -Lindelof if every fuzzy  -open cover of ( X, T ) has a countable subcover. 

(c) fuzzy mildly compact if every fuzzy clopen cover of ( X, T ) has a finite subcover. 

(d)fuzzy mildly countably compact if every fuzzy clopen countably cover of ( X, T ) has a finite subcover. 

(e) fuzzy mildly Lindelof if every fuzzy clopen cover of ( X, T ) has a countable subcover. 

2. A STUDY ON FUZZY LOCALLY b-CLOSED SETS 

Definition 2.1 Let ( X, T ) be a fuzzy topological space. Any   XI  is called a fuzzy locally closed set ( 

briefly, FLcls ) if   =      , where   is a fuzzy open set and   is a fuzzy closed set. Its complement is 

called a fuzzy locally open set. 

Definition  2.2 Let ( X, T ) be a fuzzy topological space. Any   XI  is called a fuzzy locally  -closed set ( 

briefly, FL -cls ) if   =      , where   is a fuzzy open set and   is a fuzzy  -closed set. Its 

complement is called a fuzzy locally  -open set. 

Definition  2.3 Let ( X, T ) be a fuzzy topological space. Any   XI is called a fuzzy locally semi-closed set 

( briefly, FLs-cls ) if   =      , where   is a fuzzy open set and   is a fuzzy semi-closed set. Its 

complement is called a fuzzy locally semi-open set.  

Definition  2.4 Let ( X, T ) be a fuzzy topological space.  Any   XI is called a fuzzy locally pre-closed set 

( briefly, FLp-cls ) if   =      , where   is a fuzzy open set and   is a fuzzy pre-closed set. Its 

complement is called a fuzzy locally pre-open set. 
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Definition  2.5 Let ( X, T ) be a fuzzy topological space. Any   XI is called a fuzzy locally b-closed set ( 

briefly, FLb-cls ) if   =      , where   is a fuzzy open set and   is a fuzzy b-closed set. Its complement 

is called a fuzzy locally b-open set. 

Proposition  2.1 Every fuzzy locally closed set is fuzzy locally  -closed. 

 Remark  2.1The converse of the above Proposition 2.1 need not be true.  

Example  2.1 Let X = {a, b}  and 1 , 2 , 3 
XI  be defined as follows : 1 (a) =0.5, 1 (b) = 0.4; 2 (a) = 

0.5, 2 (b) = 0.2; 3 (a) = 0.7, 3 (b) = 0.9. Define the fuzzy topology T = { 0, 1, 1 , 2 , 3  }.  Clearly (X, T) 

is a fuzzy topological space. Let   XI  be defined as  (a) = 0.5,  (b) = 0.7. Then  is fuzzy  -closed. 

Thus, for 3   T, 3    = ( 0.5, 0.7 ) =   is fuzzy locally -closed. But,   is not a fuzzy locally closed 

set,  

Proposition  2.2 Every fuzzy locally  -closed set is fuzzy locally semi-closed. 

Remark  2.2 The converse of the above Proposition 2.2 need not be true.  

Example  2.2 Let X = { a, b }  and 1 , 2 , 3 
XI be defined as follows : 1 (a) =0.3,                   1 (b) = 

0.4; 2 (a) = 0.4, 2 (b) = 0.4; 3 (a) = 0.8, 3 (b) = 0.9.Define the fuzzy topology T = { 0, 1, 1 , 2 , 3  }. 

Clearly ( X, T ) is a fuzzy topological space.  Let   XI be defined as   (a) = 0.6,  (b) = 0.5.  Then   is 

fuzzy semi-closed. Thus, for 3   T, 3      = (0.6, 0.5 ) =   is fuzzy locally semi-closed.  But,   is not 

a fuzzy locally  -closed set.  

Proposition 2.3 Every fuzzy locally semi-closed set is fuzzy locally b-closed. 

Remark  2.3The converse of the above Proposition 2.3 need not be true.  

Example  2.3 Let X = { a, b } and 1 , 2 , 3 
XI be defined as follows : 1 (a) = 0.6,                   1 (b) = 

0.8; 2 (a) = 0.5, 2 (b) = 0.4; 3 (a) = 0.7, 3 (b) = 0.9.Define the fuzzy topology T = { 0, 1, 1 , 2 , 3  }.  

Clearly ( X, T ) is a fuzzy topological space.  Let     
XI be defined as  (a) = 0.6,  (b) = 0.7. Then   is 

fuzzy b-closed. Thus, for 3   T and for the fuzzy b-closed set  , 3      = ( 0.6, 0.7 ) =   is fuzzy locally 

b-closed.  But,  is not a fuzzy locally semi-closed set.  

Proposition  2.4 Every fuzzy locally closed set is fuzzy locally pre-closed. 

Remark  2.4 The converse of the above Proposition 2.4 need not be true.  

Example  2.4 Let X = { a, b }  and 1 , 2 , 3 
XI be defined as follows : 1 (a) =0.5,                   1 (b) = 

0.6; 2 (a) = 0.4, 2 (b) = 0.3; 3 (a) = 0.9, 3 (b) = 0.8.Define the fuzzy topology T = { 0, 1, 1 , 2 , 3  }.  

Clearly ( X, T ) is a fuzzy topological space.  Let     
XI  be defined as  (a) = 0.7,  (b) = 0.5. Then   is 

fuzzy pre-closed.  Thus, for 3   T and for the fuzzy pre-closed set  , 3    = ( 0.7, 0.5 ) =   is fuzzy 

locally pre-closed. But,   is not a fuzzy locally closed set.  

Proposition  2.5 Every fuzzy locally pre-closed set is fuzzy locally b-closed. 

Remark  2.5 The converse of the above Proposition 2.5 need not be true.  
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Example  2.5 Let X = { a, b }  and 1 , 2 , 3 
XI be defined as follows: 1 (a) = 0.3,                   1 (b) = 

0.2; 2 (a) = 0.4, 2 (b) = 0.3; 3 (a) = 0.5, 3 (b) = 0.9.Define the fuzzy topology  T = { 0, 1, 1 , 2 , 3  }.  

Clearly ( X, T ) is a fuzzy topological space. Let     
XI  be defined as   (a) = 0.7,  (b) = 0.5. Then   is 

fuzzy b-closed. Thus, for 3   T and for the fuzzy b-closed set  , 3      = ( 0.5, 0.5 ) =   is fuzzy 

locally b-closed.  But,   is not a fuzzy locally pre-closed set.  

Remark  2.6 Clearly the above discussions give the following implications : 

 

                   4. A STUDY ON FUZZY LOCALLY b-CONTINUOUS FUNCTION                                    

Definition  4.1 Let ( X, T ) and ( Y, S ) be any two fuzzy topological spaces. Any function f  : ( X, T ) → ( Y, S 

) is said to be a fuzzy locally continuous function ( briefly, FLcf ) if 
1f  ( )   

XI is fuzzy locally closed 

and for each fuzzy closed set     
YI . 

Definition  4.2 Let ( X, T ) and ( Y, S ) be any two fuzzy topological spaces. Any function f  : ( X, T ) → ( Y, S 

) is said to be a fuzzy locally  -continuous  function ( briefly, FL -cf ) if 
1f ( )   

XI is fuzzy locally 

 -closed for each fuzzy closed set     
YI . 

Definition  4.3Let (X, T) and (Y, S)  be  any  two  fuzzy  topological  spaces.  Any f : ( X, T ) → ( Y, S ) is said 

to be a fuzzy locally semi-continuous  function ( briefly, FLs-cf ) if             
1f  ( )   

XI is fuzzy locally 

semi-closed and for each fuzzy closed set     
YI . 

Definition  4.4 Let ( X, T ) and ( Y, S ) be any two fuzzy topological spaces. Any function f : ( X, T ) → ( Y, S ) 

is said to be a fuzzy locally pre-continuous  function ( briefly, FLp-cf ) if 
1f  ( )   

XI is fuzzy locally  

pre-closed and for each fuzzy closed set     
YI . 

Definition  4.5 Let ( X, T ) and ( Y, S ) be any two fuzzy topological spaces. Any function f : ( X, T ) → ( Y, S ) 

is said to be a fuzzy locally b-continuous function ( briefly, FLb-cf ) if 
1f  ( )   

XI is fuzzy locally b-

closed and for each fuzzy closed set     
YI . 

Definition  4.6 Let ( X, T ) be a fuzzy topological space.  For a fuzzy set  of X, the fuzzy locally  -closure ( 

briefly,  FL -cl ) and fuzzy locally  -interior ( briefly,  FL -int ) of   are defined respectively, as  

FL -cl ( ) =   {     
XI :   ≥  ;   is fuzzy locally  -closed set } and 
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FL -int ( ) =   {     
XI :   ≤  ;   is fuzzy locally  -open set }. 

Proposition  4.1 Let ( X, T ) and ( Y, S )  be  any  two fuzzy topological spaces. Then 

 for any function f : ( X, T ) → ( Y, S )  the following statements are equivalent : 

          (a)   f  is fuzzy locally  -continuous. 

          (b)   For every     
XI , f  ( FL -cl ( ) ) ≤ cl ( f ( ) ). 

          (c)   For every     
YI , 

1f ( cl ( ) ) ≥ FL -cl (
1f ( ) ). 

          (d)   For every     
YI , 

1f ( int ( ) ) ≤ FL -int (
1f ( ) ). 

Proposition 4.2 Every fuzzy locally continuous function is fuzzy locally  -continuous. 

Remark  4.1 The converse of the above Proposition 4.2 need not be true.  

Example  4.1 Let  X = { a, b } and let 1 , 
2 , 3    

XI be defined as follows :                        1 (a) = 0.5, 

1 (b) = 0.4; 2 (a) = 0.5, 
2 (b) = 0.2; 3 (a) = 0.7, 3 (b) = 0.9. Define the fuzzy topology on X as T = { 0, 1, 

1 , 
2 , 3  }. Define the    fuzzy topology on Y as S = {0, 1,  }, where     

XI is defined as (a) = 0.3,  

 (b) = 0.5. Clearly (X, T) and (Y, S) are fuzzy topological spaces.  Define  f : ( X, T ) → ( Y, S ) as f (a) = b,  f 

(b) = a. Then,
1f  (1− ) =          ( 0.5, 0.7 ) is fuzzy  -closed. Thus, for 3    T and for the fuzzy  -closed 

set 
1f (1− ),  3  1f  (1− )=

1f (1− ) is fuzzy locally  -closed but not fuzzy locally closed in (X, 

T).   

Therefore, every fuzzy locally  -continuous function need not be fuzzy locally continuous. 

Proposition 4.3 Every fuzzy locally  -continuous function is fuzzy locally semi- continuous. 

Remark  4.2 The converse of the above Proposition 4.3 need not be true. 

Example  4.2 Let  X = { a, b } and let 1 , 
2 , 3    

XI be defined as follows :                       1 (a) = 0.3, 

1 (b) = 0.4;  2 (a) = 0.4, 
2 (b) = 0.4; 3 (a) = 0.8, 3 (b) = 0.9. Define the fuzzy topology on X as T = { 0, 1, 

1 , 
2 , 3  }. Define the fuzzy topology on Y as S = { 0, 1,   }, where     

XI is defined as  (a) = 0.5,   

 (b) = 0.4. Clearly ( X, T ) and ( Y, S ) are fuzzy topological spaces. Define f  : ( X, T ) → ( Y, S ) as f (a) = b,  

f (b) = a. Then, 
1f  (1− ) =  (0.6, 0.5) is fuzzy semi-closed. Thus, for 3   T and for the fuzzy semi-closed 

set 
1f (1− ), 3    

1f (1− ) =  
1f (1− ) is fuzzy locally semi-closed  but not fuzzy locally  -closed 

in ( X, T ).  Therefore, every fuzzy locally semi-continuous function need not be fuzzy locally  -

continuous. 

Proposition 4.4 Every fuzzy locally semi-continuous function is fuzzy locally b-continuous. 

Remark  4.3 The converse of the above Proposition 4.4 need not be true.  

Example  4.3 Let  X = { a, b } and let 1 , 
2 , 3    

XI be defined as follows :                       1 (a) = 0.6, 

1 (b) = 0.8; 2 (a) = 0.5, 
2 (b) = 0.4; 3 (a) = 0.7, 3 (b) = 0.9. Define the fuzzy topology on X as T ={0, 1, 

1 , 
2 , 3 }. Define the fuzzy topology on Y as S ={0, 1,  }, where   XI is defined as  (a) = 0.3,  (b) 

= 0.4. Clearly (X, T) and ( Y, S) are fuzzy topological spaces. Define f :(X, T)→(Y, S) as f (a) = b, f (b) = a. 
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Then,
1f (1− ) =(0.6, 0.7) is fuzzy b-closed. Thus, for 3 T and for the fuzzy b-closed set 

1f  (1− ), 

3  1f (1− ) = 
1f (1− ) is fuzzy locally b-closed but not fuzzy locally semi-closed in. Therefore, every 

fuzzy locally b-continuous function need not be fuzzy locally semi-continuous. 

Proposition 4.5 Every fuzzy locally continuous function is fuzzy locally pre-continuous. 

Remark  4.4 The converse of the above Proposition 4.5 need not be true.  

Example  4.4 Let  X = { a, b } and let 1 , 
2 , 3    

XI be defined as follows : 1 (a) = 0.5, 1 (b) = 0.6;  

2 (a) = 0.4, 
2 (b) = 0.3; 3 (a) = 0.9, 3 (b) = 0.8. Define the fuzzy topology on X as T = { 0, 1, 1 , 

2 , 3  

}. Define the fuzzy topology on Y as S = { 0, 1,   }, where     
XI is defined as  (a) = 0.5,  (b) = 0.3. 

Clearly ( X, T ) and ( Y, S ) are fuzzy topological spaces. Define   f  : ( X, T ) → ( Y, S ) as f (a) = b,  f (b) = a. 

Then, 
1f  (1− ) = ( 0.7, 0.5 ) is fuzzy pre-closed. Thus, for 3   T and for the fuzzy pre-closed set 

1f (1−

 ),  3    
1f (1− ) =

1f (1− ) is fuzzy locally pre-closed but not fuzzy locally closed in ( X, T ) . 

Therefore, every fuzzy locally pre-continuous function need not be fuzzy locally continuous. 

Proposition 4.6 Every fuzzy locally pre-continuous function is fuzzy locally b-continuous. 

Remark  4.5 The converse of the above Proposition 4.6 need not be true.  

Example  4.5  Let  X = { a, b } and let 1 , 
2 , 3    

XI be defined as follows : 1 (a) = 0.3, 1 (b) = 0.2; 

2 (a) = 0.4, 
2 (b) = 0.3; 3 (a) = 0.5, 3 (b) = 0.9. Define the fuzzy topology on X as T = { 0, 1, 1 , 

2 , 3  

}. Define the fuzzy topology on Y as S = { 0, 1,   }, where     
XI is defined as  (a) = 0.5,    (b) = 0.5. 

Clearly ( X, T ) and ( Y, S ) are fuzzy topological spaces. Define   f  : ( X, T ) → ( Y, S ) as f (a) = b,  f (b) = a. 

Then, 
1f (1− ) = ( 0.5, 0.5 ) is fuzzy b-closed. Thus, for 3     T and for the fuzzy b-closed set 

1f  (1−

), 3   1f (1− )  = 
1f (1− ) is fuzzy locally b-closed but not fuzzy locally pre closed in ( X, T ). 

Therefore, every fuzzy locally b-continuous function need not be fuzzy locally pre continuous. 

Remark  4.6 Clearly the above discussions give the following implications : 

                                               

5. A VIEW ON FUZZY LOCALLY b-COMPACTNESS 

Definition  5.1 Let ( X, T ) be a fuzzy topological space. The collection { i    
XI : i  is fuzzy locally b-

open, i   J } is called the fuzzy locally b-open cover of ( X, T ) if 
J i

i  = 1.                                                                                                      
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Definition  5.2 Let ( X, T ) be a fuzzy topological space. The collection { i    
XI : i  is fuzzy locally b-

closed, i   J} is called the fuzzy locally b-closed cover of (X, T) if 
J i

i  = 1. 

Definition  5.3 A fuzzy topological space ( X, T ) is said to be     

(a)   fuzzy locally b-compact if every fuzzy locally b-open cover of ( X, T ) has a finite subcover. 

          (b)  fuzzy locally countably b-compact if every fuzzy locally b-open countable cover of ( X, T ) has a 

finite subcover. 

          (c)    fuzzy locally b-Lindelof if every fuzzy locally b-open cover of ( X, T ) has a countable subcover. 

          (d)   fuzzy locally b-closed-compact if every fuzzy locally b-closed cover of ( X, T ) has a finite subcover. 

          (e)  fuzzy locally countably b-closed-compact if every fuzzy locally b-closed countable cover of ( X, T ) 

has a finite subcover. 

          (f)    fuzzy locally b-closed-Lindelof if every fuzzy locally b-closed  cover of ( X, T ) has a countable 

subcover. 

Definition  5.4 Let ( X, T ) and ( Y, S ) be any two fuzzy topological spaces. Any function f  : ( X, T ) → ( Y, S 

) is said to be fuzzy locally b-continuous if
1f (  )   

XI  is a fuzzy locally b-open set for every fuzzy open 

set    
YI . 

Definition  5.5 Any fuzzy topological space ( X, T ) is said to be a fuzzy locally b- 2/1 space if every fuzzy 

locally b-open set in ( X, T ) is a fuzzy open set. 

Proposition  5.1 Let ( X, T ) and ( Y, S ) be  any  two  fuzzy topological spaces and let f : ( X, T ) → ( Y, S )  be 

a fuzzy locally b-continuous surjection. If ( X, T ) is fuzzy locally b–compact, then ( Y, S ) is fuzzy mildly 

compact. 

Proposition  5.2 Let ( X, T ) and ( Y, S ) be any two fuzzy topological spaces and let f : ( X, T ) → ( Y, S ) be a 

fuzzy locally b-continuous surjection. If ( X, T ) is fuzzy locally b-Lindelof,  then ( Y, S ) is fuzzy mildly 

Lindelof. 

Proposition  5.3 Let ( X, T ) and ( Y, S ) be any two fuzzy topological spaces and let                   f : ( X, T ) → ( 

Y, S )  be a fuzzy locally b-continuous surjection. If ( X, T ) is fuzzy locally countably b-compact, then ( Y, S ) 

is fuzzy mildly countably compact. 

Proposition  5.4 Let  ( X, T )  and  ( Y, S )  be  any  two  fuzzy topological spaces and let             f : ( X, T ) → ( 

Y, S ) be a fuzzy locally b-continuous surjection. If ( X, T ) is fuzzy locally b-closed-compact.  Then  ( Y, S ) is 

fuzzy mildly compact. 

Proposition  5.5 Let ( X, T ) and ( Y, S ) be any two fuzzy topological spaces and let                     f : ( X, T ) → 

( Y, S )  be a fuzzy locally b-continuous surjection. If ( X, T ) is fuzzy locally b-closed-Lindelof,  then ( Y, S ) is 

fuzzy mildly Lindelof. 

Proposition  5.6 Let ( X, T ) and ( Y, S ) be any two fuzzy topological spaces and let                     f : ( X, T ) → 

( Y, S) be a fuzzy locally b-continuous surjection. If ( X, T ) is fuzzy locally countably b-closed-compact, then ( 

Y, S ) is fuzzy mildly countably compact. 
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Proposition  5.7 Let ( X, T ) and ( Y, S ) be any two fuzzy topological spaces. If ( X, T ) is a fuzzy compact and 

fuzzy locally b- 2/1  space and f : ( X, T ) → ( Y, S ) is a fuzzy locally b-continuous  surjection, then ( Y, S ) is 

also a fuzzy compact space. 

Acknowledgement: The authors express their sincere thanks to the referees for their valuable 

comments regarding the improvement of the paper.  
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