American J. of Mathematics and Sciences Vol. 3, No -1 ,(January 2014) Copyright © Mind Reader Publications ISSN No: 2250-3102

A STUDY ON FUZZY LOCALLY b-CLOSED SETS

G. VASUKI & T.PREMAKUMARI

Associate Professor of Mathematics

Dr. B.AMUDHAMBIGAI Assistant Professor of Mathematics Department of Mathematics Sri Sarada College for Women, Salem-16 Tamil Nadu, India.

T.PREMAKUMARI Sri Sarada College for Women, Salem-16 Tamil Nadu, India.

ABSTRACT

In this paper the concept of fuzzy locally b-closed sets is introduced and its inter relations with other types of locally closed sets are studied with suitable counter examples. Equivalently the inter relations of fuzzy locally b-continuous functions with other types of fuzzy locally continuous functions are discussed with necessary counter examples. Also the concepts of fuzzy locally b-compact spaces, fuzzy locally b-Lindelof spaces and fuzzy locally b-closed compact spaces are introduced and some of their charecterizations and properties are established.

Key words

fuzzy locally b-closed sets, fuzzy locally b-continuous functions, fuzzy locally b-compact spaces and fuzzy locally b-Lindelof spaces

1. INTRODUCTION AND PRELIMINARIES

1.1 Introduction

The concept of fuzzy sets was introduced by Zadeh [11] in his classical paper. Fuzzy sets have applications in many fields such as information [9] and control [10]. The first step of locally closedness was done by Bourbaki [5]. Ganster and Reilly used locally closed sets in [8] to define Lc - continuity and Lc - compactness. The concepts of r - fuzzy $G_{\delta} - \tilde{g}$ -locally closed sets and fuzzy $G_{\delta} - \tilde{g}$ -locally continuous functions were studied by Amudhambigai, Uma and Roja [1]. The concepts of fuzzy slightly β -continuity, fuzzy β -Lindelof, fuzzy mildly compact and fuzzy countably β -closed compact were introduced by Erdal Ekici [7]. In this paper the concept of fuzzy locally b-closed sets is introduced and its inter relations with other types of locally closed sets are studied with suitable counter examples. Equivalently the inter relations of fuzzy locally b-continuous functions are discussed with necessary counter examples. Also the concepts of fuzzy locally b-compact spaces, fuzzy locally b-Lindelof spaces and

A STUDY ON FUZZY LOCALLY b-CLOSED SETS

fuzzy locally b-closed compact spaces are introduced and some of their charecterizations and properties are established.

1.2 PRELIMINARIES

Definition : 1.2.2 [2,6] A fuzzy topological space (X, T) is said to be **fuzzy compact** if every fuzzy open cover of (X, T) has a finite subcover.

Definition : 1.2.4 [4] Any $\lambda \in I^X$ in a fuzzy topological space (X, T) is said to be a

- (i) **fuzzy** α -closed set (briefly, F α -cls) if $\lambda \ge cl$ (int (cl (λ)))
- (ii) **fuzzy pre-closed set** (briefly, Fp-cls) if $\lambda \ge cl(int(\lambda))$.
- (iii) fuzzy semi-closed set (briefly, Fs-cls) if $\lambda \ge int(cl(\lambda))$.

Definition : 1.2.7 [3] Any fuzzy set $\lambda \in I^X$ in a fuzzy topological space (X, T) is said to be a fuzzy b-closed set (briefly, Fb-cls) if $\lambda \geq cl$ (int (λ)) \wedge int (cl (λ)).

Definition : 1.2.8 [6] Let (X, T) and (Y, S) be any two fuzzy topological spaces. Any function $f: (X, T) \rightarrow C$

(Y, S) is said to be a **fuzzy continuous function** if $f^{-1}(\lambda)$ is fuzzy open in (X, T) for each fuzzy open set λ in (Y, S).

Definition : 1.2.9 [7] A fuzzy topological space (X, T) is said to be **fuzzy** β -compact if every fuzzy β -open cover of (X, T) has a finite subcover.

(a) fuzzy countably β -compact if every fuzzy β -open countably cover of (X, T) has a finite subcover.

(b) fuzzy β -Lindelof if every fuzzy β -open cover of (X, T) has a countable subcover.

(c) fuzzy mildly compact if every fuzzy clopen cover of (X, T) has a finite subcover.

(d)fuzzy mildly countably compact if every fuzzy clopen countably cover of (X, T) has a finite subcover.

(e) fuzzy mildly Lindelof if every fuzzy clopen cover of (X, T) has a countable subcover.

2. A STUDY ON FUZZY LOCALLY b-CLOSED SETS

Definition 2.1 Let (X, T) be a fuzzy topological space. Any $\lambda \in I^X$ is called a **fuzzy locally closed set** (briefly, **FLcls**) if $\lambda = \mu \land \gamma$, where μ is a fuzzy open set and γ is a fuzzy closed set. Its complement is called a **fuzzy locally open set**.

Definition 2.2 Let (X, T) be a fuzzy topological space. Any $\lambda \in I^X$ is called a **fuzzy locally** α -closed set (briefly, **FL** α -cls) if $\lambda = \mu \land \gamma$, where μ is a fuzzy open set and γ is a fuzzy α -closed set. Its complement is called a **fuzzy locally** α -open set.

Definition 2.3 Let (X, T) be a fuzzy topological space. Any $\lambda \in I^X$ is called a **fuzzy locally semi-closed set** (briefly, **FLs-cls**) if $\lambda = \mu \land \gamma$, where μ is a fuzzy open set and γ is a fuzzy semi-closed set. Its complement is called a **fuzzy locally semi-open set.**

Definition 2.4 Let (X, T) be a fuzzy topological space. Any $\lambda \in I^X$ is called a **fuzzy locally pre-closed set** (briefly, **FLp-cls**) if $\lambda = \mu \land \gamma$, where μ is a fuzzy open set and γ is a fuzzy pre-closed set. Its complement is called a **fuzzy locally pre-open set.**

G. VASUKI & T.PREMAKUMARI

Definition 2.5 Let (X, T) be a fuzzy topological space. Any $\lambda \in I^X$ is called a **fuzzy locally b-closed set** (briefly, **FLb-cls**) if $\lambda = \mu \land \gamma$, where μ is a fuzzy open set and γ is a fuzzy b-closed set. Its complement is called a **fuzzy locally b-open set**.

Proposition 2.1 Every fuzzy locally closed set is fuzzy locally α -closed.

Remark 2.1The converse of the above Proposition 2.1 need not be true.

Example 2.1 Let $X = \{a, b\}$ and $\lambda_1, \lambda_2, \lambda_3 \in I^X$ be defined as follows : $\lambda_1(a) = 0.5, \lambda_1(b) = 0.4; \lambda_2(a) = 0.5, \lambda_2(b) = 0.2; \lambda_3(a) = 0.7, \lambda_3(b) = 0.9$. Define the fuzzy topology $T = \{0, 1, \lambda_1, \lambda_2, \lambda_3\}$. Clearly (X, T) is a fuzzy topological space. Let $\gamma \in I^X$ be defined as $\gamma(a) = 0.5, \gamma(b) = 0.7$. Then γ is fuzzy α -closed. Thus, for $\lambda_3 \in T, \lambda_3 \wedge \gamma = (0.5, 0.7) = \lambda$ is fuzzy locally α -closed. But, λ is not a fuzzy locally closed set,

Proposition 2.2 Every fuzzy locally α -closed set is fuzzy locally semi-closed.

Remark 2.2 The converse of the above Proposition 2.2 need not be true.

Example 2.2 Let X = { a, b } and λ_1 , λ_2 , $\lambda_3 \in I^X$ be defined as follows : λ_1 (a) =0.3, λ_1 (b) = 0.4; λ_2 (a) = 0.4, λ_2 (b) = 0.4; λ_3 (a) = 0.8, λ_3 (b) = 0.9.Define the fuzzy topology T = { 0, 1, λ_1 , λ_2 , λ_3 }. Clearly (X, T) is a fuzzy topological space. Let $\gamma \in I^X$ be defined as γ (a) = 0.6, γ (b) = 0.5. Then γ is fuzzy semi-closed. Thus, for $\lambda_3 \in T$, $\lambda_3 \wedge \gamma = (0.6, 0.5) = \lambda$ is fuzzy locally semi-closed. But, λ is not a fuzzy locally α -closed set.

Proposition 2.3 Every fuzzy locally semi-closed set is fuzzy locally b-closed.

Remark 2.3The converse of the above Proposition 2.3 need not be true.

Example 2.3 Let X = { a, b } and λ_1 , λ_2 , $\lambda_3 \in I^X$ be defined as follows : $\lambda_1(a) = 0.6$, $\lambda_1(b) = 0.8$; $\lambda_2(a) = 0.5$, $\lambda_2(b) = 0.4$; $\lambda_3(a) = 0.7$, $\lambda_3(b) = 0.9$. Define the fuzzy topology T = { 0, 1, λ_1 , λ_2 , λ_3 }. Clearly (X, T) is a fuzzy topological space. Let $\gamma \in I^X$ be defined as $\gamma(a) = 0.6$, $\gamma(b) = 0.7$. Then γ is fuzzy b-closed. Thus, for $\lambda_3 \in T$ and for the fuzzy b-closed set γ , $\lambda_3 \wedge \gamma = (0.6, 0.7) = \lambda$ is fuzzy locally b-closed. But, λ is not a fuzzy locally semi-closed set.

Proposition 2.4 Every fuzzy locally closed set is fuzzy locally pre-closed.

Remark 2.4 The converse of the above Proposition 2.4 need not be true.

Example 2.4 Let X = { a, b } and λ_1 , λ_2 , $\lambda_3 \in I^X$ be defined as follows : λ_1 (a) =0.5, λ_1 (b) = 0.6; λ_2 (a) = 0.4, λ_2 (b) = 0.3; λ_3 (a) = 0.9, λ_3 (b) = 0.8.Define the fuzzy topology T = { 0, 1, λ_1 , λ_2 , λ_3 }. Clearly (X, T) is a fuzzy topological space. Let $\gamma \in I^X$ be defined as γ (a) = 0.7, γ (b) = 0.5. Then γ is fuzzy pre-closed. Thus, for $\lambda_3 \in T$ and for the fuzzy pre-closed set γ , $\lambda_3 \wedge \gamma = (0.7, 0.5) = \lambda$ is fuzzy locally pre-closed. But, λ is not a fuzzy locally closed set.

Proposition 2.5 Every fuzzy locally pre-closed set is fuzzy locally b-closed.

Remark 2.5 The converse of the above Proposition 2.5 need not be true.

A STUDY ON FUZZY LOCALLY b-CLOSED SETS

Example 2.5 Let X = { a, b } and λ_1 , λ_2 , $\lambda_3 \in I^X$ be defined as follows: $\lambda_1(a) = 0.3$, $\lambda_1(b) = 0.2$; $\lambda_2(a) = 0.4$, $\lambda_2(b) = 0.3$; $\lambda_3(a) = 0.5$, $\lambda_3(b) = 0.9$. Define the fuzzy topology T = { 0, 1, λ_1 , λ_2 , λ_3 }. Clearly (X, T) is a fuzzy topological space. Let $\gamma \in I^X$ be defined as $\gamma(a) = 0.7$, $\gamma(b) = 0.5$. Then γ is fuzzy b-closed. Thus, for $\lambda_3 \in T$ and for the fuzzy b-closed set γ , $\lambda_3 \land \gamma = (0.5, 0.5) = \lambda$ is fuzzy locally b-closed. But, λ is not a fuzzy locally pre-closed set.

Remark 2.6 Clearly the above discussions give the following implications :

4. A STUDY ON FUZZY LOCALLY b-CONTINUOUS FUNCTION

Definition 4.1 Let (X, T) and (Y, S) be any two fuzzy topological spaces. Any function $f : (X, T) \rightarrow (Y, S)$) is said to be a **fuzzy locally continuous function** (briefly, **FLcf**) if $f^{-1}(\lambda) \in I^X$ is fuzzy locally closed and for each fuzzy closed set $\lambda \in I^Y$.

Definition 4.2 Let (X, T) and (Y, S) be any two fuzzy topological spaces. Any function $f : (X, T) \to (Y, S)$) is said to be a **fuzzy locally** α -continuous function (briefly, **FL** α -cf) if $f^{-1}(\lambda) \in I^X$ is fuzzy locally α -closed for each fuzzy closed set $\lambda \in I^Y$.

Definition 4.3Let (X, T) and (Y, S) be any two fuzzy topological spaces. Any $f: (X, T) \to (Y, S)$ is said to be a **fuzzy locally semi-continuous function** (briefly, **FLs-cf**) if $f^{-1}(\lambda) \in I^X$ is fuzzy locally semi-closed and for each fuzzy closed set $\lambda \in I^Y$.

Definition 4.4 Let (X, T) and (Y, S) be any two fuzzy topological spaces. Any function $f: (X, T) \to (Y, S)$ is said to be a **fuzzy locally pre-continuous function** (briefly, **FLp-cf**) if $f^{-1}(\lambda) \in I^X$ is fuzzy locally pre-closed and for each fuzzy closed set $\lambda \in I^Y$.

Definition 4.5 Let (X, T) and (Y, S) be any two fuzzy topological spaces. Any function $f: (X, T) \to (Y, S)$ is said to be a **fuzzy locally b-continuous function** (briefly, **FLb-cf**) if $f^{-1}(\lambda) \in I^X$ is fuzzy locally b-closed and for each fuzzy closed set $\lambda \in I^Y$.

Definition 4.6 Let (X, T) be a fuzzy topological space. For a fuzzy set λ of X, the **fuzzy locally** α -closure (briefly, FL α -cl) and **fuzzy locally** α -interior (briefly, FL α -int) of λ are defined respectively, as FL α -cl $(\lambda) = \wedge \{ \mu \in I^X : \mu \ge \lambda; \mu \text{ is fuzzy locally } \alpha \text{ -closed set } \}$ and

G. VASUKI & T.PREMAKUMARI

FL α -int $(\lambda) = \vee \{ \mu \in I^X : \mu \leq \lambda; \mu \text{ is fuzzy locally } \alpha \text{ -open set } \}.$

Proposition 4.1 Let (X, T) and (Y, S) be any two fuzzy topological spaces. Then for any function $f: (X, T) \rightarrow (Y, S)$ the following statements are equivalent :

- (a) f is fuzzy locally α -continuous.
- (b) For every $\lambda \in I^X$, $f(FL\alpha cl(\lambda)) \le cl(f(\lambda))$.
- (c) For every $\lambda \in I^{Y}$, $f^{-1}(\operatorname{cl}(\lambda)) \ge \operatorname{FL} \alpha \operatorname{cl}(f^{-1}(\lambda))$.
- (d) For every $\lambda \in I^{Y}$, $f^{-1}(\operatorname{int}(\lambda)) \leq \operatorname{FL} \alpha \operatorname{int}(f^{-1}(\lambda))$.

Proposition 4.2 Every fuzzy locally continuous function is fuzzy locally α -continuous.

Remark 4.1 The converse of the above Proposition 4.2 need not be true.

Example 4.1 Let X = { a, b } and let λ_1 , λ_2 , $\lambda_3 \in I^X$ be defined as follows : $\lambda_1(a) = 0.5$, $\lambda_1(a) = 0.5$, $\lambda_2(b) = 0.2$; $\lambda_3(a) = 0.7$, $\lambda_3(b) = 0.9$. Define the fuzzy topology on X as T = { 0, 1, λ_1 , λ_2 , λ_3 }. Define the fuzzy topology on Y as S = {0, 1, $\lambda}$ }, where $\lambda \in I^X$ is defined as $\lambda(a) = 0.3$, $\lambda(b) = 0.5$. Clearly (X, T) and (Y, S) are fuzzy topological spaces. Define $f: (X, T) \rightarrow (Y, S)$ as f(a) = b, f(b) = a. Then, $f^{-1}(1-\lambda) = (0.5, 0.7)$ is fuzzy α -closed. Thus, for $\lambda_3 \in T$ and for the fuzzy α -closed set $f^{-1}(1-\lambda)$, $\lambda_3 \wedge f^{-1}(1-\lambda) = f^{-1}(1-\lambda)$ is fuzzy locally α -closed but not fuzzy locally closed in (X, T).

Therefore, every fuzzy locally α -continuous function need not be fuzzy locally continuous.

Proposition 4.3 Every fuzzy locally α -continuous function is fuzzy locally semi- continuous.

Remark 4.2 The converse of the above Proposition 4.3 need not be true.

Example 4.2 Let $X = \{a, b\}$ and let $\lambda_1, \lambda_2, \lambda_3 \in I^X$ be defined as follows : $\lambda_1(a) = 0.3$, $\lambda_1(b) = 0.4$; $\lambda_2(a) = 0.4$, $\lambda_2(b) = 0.4$; $\lambda_3(a) = 0.8$, $\lambda_3(b) = 0.9$. Define the fuzzy topology on X as $T = \{0, 1, \lambda_1, \lambda_2, \lambda_3\}$. Define the fuzzy topology on Y as $S = \{0, 1, \lambda\}$, where $\lambda \in I^X$ is defined as $\lambda(a) = 0.5$, $\lambda(b) = 0.4$. Clearly (X, T) and (Y, S) are fuzzy topological spaces. Define $f : (X, T) \to (Y, S)$ as f(a) = b, f(b) = a. Then, $f^{-1}(1-\lambda) = (0.6, 0.5)$ is fuzzy semi-closed. Thus, for $\lambda_3 \in T$ and for the fuzzy semi-closed set $f^{-1}(1-\lambda), \lambda_3 \wedge f^{-1}(1-\lambda) = f^{-1}(1-\lambda)$ is fuzzy locally semi-closed but not fuzzy locally α -closed in (X, T). Therefore, every fuzzy locally semi-continuous function need not be fuzzy locally α -continuous.

Proposition 4.4 Every fuzzy locally semi-continuous function is fuzzy locally b-continuous.

Remark 4.3 The converse of the above Proposition 4.4 need not be true.

Example 4.3 Let X = { a, b } and let λ_1 , λ_2 , $\lambda_3 \in I^X$ be defined as follows : $\lambda_1(a) = 0.6$, $\lambda_1(b) = 0.8$; $\lambda_2(a) = 0.5$, $\lambda_2(b) = 0.4$; $\lambda_3(a) = 0.7$, $\lambda_3(b) = 0.9$. Define the fuzzy topology on X as T ={0, 1, λ_1 , λ_2 , λ_3 }. Define the fuzzy topology on Y as S ={0, 1, $\lambda}$ }, where $\lambda \in I^X$ is defined as $\lambda(a) = 0.3$, $\lambda(b) = 0.4$. Clearly (X, T) and (Y, S) are fuzzy topological spaces. Define $f:(X, T) \rightarrow (Y, S)$ as f(a) = b, f(b) = a.

Then, $f^{-1}(1-\lambda) = (0.6, 0.7)$ is fuzzy b-closed. Thus, for $\lambda_3 \in T$ and for the fuzzy b-closed set $f^{-1}(1-\lambda)$, $\lambda_3 \wedge f^{-1}(1-\lambda) = f^{-1}(1-\lambda)$ is fuzzy locally b-closed but not fuzzy locally semi-closed in. Therefore, every fuzzy locally b-continuous function need not be fuzzy locally semi-continuous.

Proposition 4.5 Every fuzzy locally continuous function is fuzzy locally pre-continuous.

Remark 4.4 The converse of the above Proposition 4.5 need not be true.

Example 4.4 Let $X = \{a, b\}$ and let $\lambda_1, \lambda_2, \lambda_3 \in I^X$ be defined as follows : $\lambda_1(a) = 0.5, \lambda_1(b) = 0.6;$ $\lambda_2(a) = 0.4, \lambda_2(b) = 0.3; \lambda_3(a) = 0.9, \lambda_3(b) = 0.8$. Define the fuzzy topology on X as $T = \{0, 1, \lambda_1, \lambda_2, \lambda_3\}$. Define the fuzzy topology on Y as $S = \{0, 1, \lambda\}$, where $\lambda \in I^X$ is defined as $\lambda(a) = 0.5, \lambda(b) = 0.3$. Clearly (X, T) and (Y, S) are fuzzy topological spaces. Define $f : (X, T) \rightarrow (Y, S)$ as f(a) = b, f(b) = a. Then, $f^{-1}(1-\lambda) = (0.7, 0.5)$ is fuzzy pre-closed. Thus, for $\lambda_3 \in T$ and for the fuzzy pre-closed set $f^{-1}(1-\lambda), \lambda_3 \wedge f^{-1}(1-\lambda) = f^{-1}(1-\lambda)$ is fuzzy locally pre-closed but not fuzzy locally closed in (X, T).

Therefore, every fuzzy locally pre-continuous function need not be fuzzy locally continuous.

Proposition 4.6 Every fuzzy locally pre-continuous function is fuzzy locally b-continuous.

Remark 4.5 The converse of the above Proposition 4.6 need not be true.

Example 4.5 Let X = { a, b } and let λ_1 , λ_2 , $\lambda_3 \in I^X$ be defined as follows : λ_1 (a) = 0.3, λ_1 (b) = 0.2; λ_2 (a) = 0.4, λ_2 (b) = 0.3; λ_3 (a) = 0.5, λ_3 (b) = 0.9. Define the fuzzy topology on X as T = { 0, 1, λ_1 , λ_2 , λ_3

}. Define the fuzzy topology on Y as $S = \{0, 1, \lambda\}$, where $\lambda \in I^X$ is defined as $\lambda(a) = 0.5$, $\lambda(b) = 0.5$. Clearly (X, T) and (Y, S) are fuzzy topological spaces. Define $f: (X, T) \to (Y, S)$ as f(a) = b, f(b) = a. Then, $f^{-1}(1-\lambda) = (0.5, 0.5)$ is fuzzy b-closed. Thus, for $\lambda_3 \in T$ and for the fuzzy b-closed set $f^{-1}(1-\lambda)$, $\lambda_3 \wedge f^{-1}(1-\lambda) = f^{-1}(1-\lambda)$ is fuzzy locally b-closed but not fuzzy locally pre closed in (X, T). Therefore, every fuzzy locally b-continuous function need not be fuzzy locally pre continuous.

Remark 4.6 Clearly the above discussions give the following implications :

5. A VIEW ON FUZZY LOCALLY b-COMPACTNESS

Definition 5.1 Let (X, T) be a fuzzy topological space. The collection $\{\lambda_i \in I^X : \lambda_i \text{ is fuzzy locally b-open} \text{ open, } i \in J \}$ is called the fuzzy locally b-open cover of (X, T) if $\bigvee_{i \in I} \lambda_i = 1$.

G. VASUKI & T.PREMAKUMARI

Definition 5.2 Let (X, T) be a fuzzy topological space. The collection $\{\lambda_i \in I^X : \lambda_i \text{ is fuzzy locally b-closed, } i \in J\}$ is called the fuzzy locally b-closed cover of (X, T) if $\bigvee \lambda_i = 1$.

Definition 5.3 A fuzzy topological space (X, T) is said to be

(a) fuzzy locally b-compact if every fuzzy locally b-open cover of (X, T) has a finite subcover.

(b) fuzzy locally countably b-compact if every fuzzy locally b-open countable cover of (X, T) has a finite subcover.

(c) fuzzy locally b-Lindelof if every fuzzy locally b-open cover of (X, T) has a countable subcover.

(d) fuzzy locally b-closed-compact if every fuzzy locally b-closed cover of (X, T) has a finite subcover.

(e) fuzzy locally countably b-closed-compact if every fuzzy locally b-closed countable cover of (X, T) has a finite subcover.

(f) **fuzzy locally b-closed-Lindelof** if every fuzzy locally b-closed cover of (X, T) has a countable subcover.

Definition 5.4 Let (X, T) and (Y, S) be any two fuzzy topological spaces. Any function $f : (X, T) \to (Y, S)$) is said to be **fuzzy locally b-continuous** if $f^{-1}(\rho) \in I^X$ is a fuzzy locally b-open set for every fuzzy open set $\rho \in I^Y$.

Definition 5.5 Any fuzzy topological space (X, T) is said to be a **fuzzy locally b-** $T_{1/2}$ **space** if every fuzzy locally b-open set in (X, T) is a fuzzy open set.

Proposition 5.1 Let (X, T) and (Y, S) be any two fuzzy topological spaces and let $f: (X, T) \rightarrow (Y, S)$ be a fuzzy locally b-continuous surjection. If (X, T) is fuzzy locally b-compact, then (Y, S) is fuzzy mildly compact.

Proposition 5.2 Let (X, T) and (Y, S) be any two fuzzy topological spaces and let $f: (X, T) \rightarrow (Y, S)$ be a fuzzy locally b-continuous surjection. If (X, T) is fuzzy locally b-Lindelof, then (Y, S) is fuzzy mildly Lindelof.

Proposition 5.3 Let (X, T) and (Y, S) be any two fuzzy topological spaces and let $f: (X, T) \rightarrow (Y, S)$ be a fuzzy locally b-continuous surjection. If (X, T) is fuzzy locally countably b-compact, then (Y, S) is fuzzy mildly countably compact.

Proposition 5.4 Let (X, T) and (Y, S) be any two fuzzy topological spaces and let $f: (X, T) \rightarrow (Y, S)$ be a fuzzy locally b-continuous surjection. If (X, T) is fuzzy locally b-closed-compact. Then (Y, S) is fuzzy mildly compact.

Proposition 5.5 Let (X, T) and (Y, S) be any two fuzzy topological spaces and let $f: (X, T) \rightarrow (Y, S)$ be a fuzzy locally b-continuous surjection. If (X, T) is fuzzy locally b-closed-Lindelof, then (Y, S) is fuzzy mildly Lindelof.

Proposition 5.6 Let (X, T) and (Y, S) be any two fuzzy topological spaces and let $f: (X, T) \rightarrow (Y, S)$ be a fuzzy locally b-continuous surjection. If (X, T) is fuzzy locally countably b-closed-compact, then (Y, S) is fuzzy mildly countably compact.

A STUDY ON FUZZY LOCALLY b-CLOSED SETS

Proposition 5.7 Let (X, T) and (Y, S) be any two fuzzy topological spaces. If (X, T) is a fuzzy compact and fuzzy locally b- $T_{1/2}$ space and $f: (X, T) \rightarrow (Y, S)$ is a fuzzy locally b-continuous surjection, then (Y, S) is also a fuzzy compact space.

Acknowledgement: The authors express their sincere thanks to the referees for their valuable comments regarding the improvement of the paper.

REFERENCES

- (1) **Amudhambigai B., Uma M. K. and Roja E.,** r Fuzzy G_{δ} g Locally Closed Sets and Fuzzy G_{δ} g Locally Continuous Functions, Int. J. of Mathematical Sciences and Applications, Vol. 1, No. 3, September 2011.
- (2) Azad K. K., On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14 32.
- (3) **Benchalli S. S. and Jenifer Karnel.**, On Fuzzy b-open sets in Fuzzy topological space J. Computer and Mathematical Sciences 1 (2010), 127 134.
- (4) **Binshahna A. S.,** On fuzzy strong semi continuity and fuzzy pre continuity, Fuzzy sets and systems, 44 (1991), 303 308.
- (5) Bourbaki N., General Topology, Part I. Addison Wesley, Reading, Mass. 1966.
- (6) Chang C. L., Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182 190.
- (7) Erdal Ekici., On fuzzy functions, Korean Math. Soc. 20 (2005), No. 4. pp. 781 789.
- (8) Ganster M. and Reilly I. L., Locally Closed Sets and Lc-continuous functions, Internet. J. Math. Sci., Vol 12 No. 3 (1989), 417 424.
- (9) Smets P., The Degree of Belief in a Fuzzy Event Inform, Sci., 25 (1981), 1 19.
- (10) Sugeno M., An Introductory Survey of Fuzzy Control, Inform, Sci., 36 (1985), 59 83.
- (11) Zadeh L. A., Fuzzy sets, Information and Control, 8 (1965), 338 353.