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ABSTRACT 

 This is worth mentioning that measures of information find tremendous applications in a 

variety of disciplines including Mathematics, Statistics and Operations Research. In the present 

communication, we have provided the applications of some specified measures of entropy and 

directed divergence to the field of statistics for evaluating approximately the probability of a given 

distribution by using the maximum entropy principle.  
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INTRODUCTION 

         After the introduction of the concept of entropy by Shannon [8], it was realized that entropy is a property of 

any stochastic system and the concept is now used widely in many fields. The tendency of the systems to become 

more disordered over time is described by the second law of thermodynamics, which states that the entropy of the 

system cannot spontaneously decrease. Today, information theory is still principally concerned with communication 

systems, but there are widespread applications in statistics, information processing and computing. A great deal of 

insight is obtained by considering entropy equivalent to uncertainty and a generalized theory of uncertainty has well 

been explained by Zadeh [9]. This uncertainty is called entropy, since this is the terminology that is well entrenched 
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in the literature. Shannon [8] introduced the concept of entropy by associating uncertainty with every probability 

distribution  npppP ....,,, 21  and found the following unique function that can measure it:  
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                                                                                                     (1.1) 

The probabilistic measure of entropy (1.1) possesses a number of interesting properties. Immediately, after Shannon 

gave his measure, research workers in many fields saw the potential of the application of this expression and a large 

number of other information theoretic measures were derived. Renyi [7] defined entropy of order  as: 
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which includes Shannon’s [8] entropy as a limiting case as  1. Zyczkowski [10] explored the relationships 

between the Shannon’s [8] entropy and Renyi’s [7] entropies of integer order. Some work related with the 

discontinuity of Shannon’s measure has been done by Ho and Yeung [4]. 

Havrada and Charvat [3] introduced first non-additive entropy, given by:  
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Kapur [5] introduced the following generalized measure of entropy: 
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         Dehmer and Mowshowitz [2] described methods for measuring the entropy of graphs and to demonstrate the 

wide applicability of entropy measures. The authors have discussed the graph entropy measures which play an 

important role in a variety of problem areas, including biology, chemistry, and sociology, and moreover, developed 

relationships between selected entropy measures, illustrating differences quantitatively with concrete examples.  

          One of the basic concepts in the applications of information theory is that of entropy whereas another concept 

which is of basic importance is that of “distance” or of “directed divergence”. In fact, of the two concepts, the 

concept of directed divergence is the more fundamental, since the concept of entropy can be derived from it and it is 

of great importance in all applications of mathematics to science and engineering. Naturally attempts were made to 

extend the concepts of distance for application to problems in other fields. Such a measure of distance usually 

denoted by ( : )D P Q   which is defined as the discrepancy of the probability distribution P from another probability 

distribution Q has been developed by Kullback and Leibler [6]. In some sense, it measures the distance of P from Q 

and is given by  
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      Recently, Cai, Kulkarni and Verdu [1] remarked that Kullback-Leibler’s [6] divergence is a fundamental 

information measure, special cases of which are mutual information and entropy, but the problem of divergence 

estimation of sources whose distributions are unknown has received relatively little attention.  

Some parametric measures of directed divergence are:  
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which is Renyi’s [7] probabilistic measure of directed divergence. 
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which is Havrada and Charvat’s [3] probabilistic measure of  divergence. 

 These measures of information including both, that is, measures of entropy and divergence find tremendous 

applications in a variety of disciplines. In the present communication, we have provided the applications of these 

measures to the field of probability theory by using the maximum entropy principle.  

 

2. APPROXIMATING A PROBABILITY DISTRIBUTION VIA MAXIMUM ENTROPY PRINCIPLE  

        It is known fact that in many practical problems while dealing with the various disciplines of Operations 

Research and Statistics, we do not get simple expressions for the probability distributions. In all such cases, it 

becomes very difficult to apply these complicated expressions for further mathematical treatment in the 

manipulation of new results. Thus, it becomes the desirability to approximate these probability distributions. The 

approximating probability distributions should have some common properties with the given distribution. The 

simplest property is of having some common moments.  

         There may be an infinite number of distributions with the same first moment as the given distribution but we 

are interested with only that probability distribution which is most unbiased and from the theory of maximum 

entropy principle, we accept only that distribution which has maximum entropy. This fundamental principle will 

provide our first approximation to the given distribution. This result is based upon the postulate that most probability 

distributions are either maximum entropy distributions or very nearly so. To find a better approximation, we try to 

find that maximum entropy probability distribution which has two moments in common with the given probability 

distribution. As the number of moments goes on increasing, we get much better and better approximations and as a 

result of this we obtain the desired approximation of the given probability distribution. We illustrate the above 

mentioned principle by considering the following numerical example: 

Numerical Example: 

Let us consider the theoretical probability distribution P, given by 
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: 0 1 2 3 4

: 0.4 0.3 0.2 0.07 0.03i

i

p
 

Our problem is to find MEPD with 

(I) same mean; 

(II) same mean and op ; 

(III) same mean, op and 1p ; and 

(IV) same first two moments 

Our purpose is also to find that maximum entropy probability distribution which is closest to the given probability 

distribution P. 

To solve the above problem, we make use of maximum entropy principle by using Havrada and Charvat’s [3] entropy of 

order 2 and our problem becomes: 

(I) Maximize Havrada and Charvat’s [3] entropy of order 2 given by 

1
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subject to the following set of constraints 
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(ii) 
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The corresponding Lagrangian is given by 
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( )ip i                                                                                                                                     (2.4) 

Applying (2.2), we get 

2 0.2                                                                                                                                      (2.5) 

Applying (2.3), we get 

3 0.103                                                                                                                                  (2.6) 

From (2.5) and (2.6), we have 0.394    and 0.097   

With these values of  and  , equation (2.4) gives the following set of probability distribution: 
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0 0.3940p  , 1 0.2970p  , 2 0.2000p  , 3 0.1030p  , 4 0.0006p  . Obviously, 

4

0

0.9946 1i

i

p


   

Thus, the first MEPD 1P  is given by  1 0.3940,0.2970,0.2000,0.1030,0.0006P   

(II) In this case, our problem is to maximize Havrada and Charvat’s (1967) entropy (2.1) under the set of constraints 

(2.2), (2.3) and 0.4op  . 

Now 
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or 4 10 0.6                                                                                                                              (2.7) 

Applying (2.3), we get 

10 30 1.03                                                                                                                              (2.8) 

Equations (2.7) and (2.8) together give 0.385    and 0.094   

With these values of  and  , equation (2.4) gives the following set of probability distribution: 

0 0.4000p  , 1 0.2910p  , 2 0.1970p  , 3 0.1030p  , 4 0.0090p  . Obviously, 
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Thus, the second MEPD 2P  is given by  2 0.4000,0.2910,0.1970,0.1030,0.0090P   

(III) In this case, our problem is to maximize Havrada and Charvat’s [3] entropy (2.1) under the set of constraints (2.2), 

(2.3), 0.4op  and 1 0.3p  . 
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Applying (2.4), we get 

3 0.1                                                                                                                                      (2.9) 

Also (2.3) gives 

9 29 0.73                                                                                                                              (2.10) 

Equations (2.9) and (2.10) together give 0.355    and 0.085   

With these values of  and  , equation (2.4) gives the following set of probability distribution: 

0 0.4000p  , 1 0.3000p  , 2 0.1850p  , 3 0.1000p  , 4 0.0150p  . Obviously, 

4

0

1i

i

p


  

Thus, the third MEPD 3P  is given by  3 0.4000,0.3000,0.1850,0.1000,0.0150P   
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(IV)  In this case, our problem is to maximize Havrada and Charvat’s [3] entropy of order 2 subject to the set of 

constraints (2.2) and (2.3) along with the additional constraint given by 
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                                                                                                                                (2.11) 

The corresponding Lagrangian is given by 
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2( )ip i i w                                                                                                                            (2.12) 

Applying (2.2), equation (2.12) gives 

5 10 30 1w                                                                                                                           (2.13) 

Applying (2.3), equation (2.12) gives 

10 30 100 1.03w                                                                                                                  (2.14) 

Applying (2.11), equation (2.12) gives 

30 100 354 2.21w                                                                                                               (2.15) 

After solving equations (2.13), (2.14) and (2.15), we get 0.0064w  , 0.1226  and 0.4068    

With these values of w , and   equation (2.12) gives the following set of probability distribution: 

0 0.4068p  , 1 0.2906p  , 2 0.1872p  , 3 0.0966p  , 4 0.0188p  . Obviously, 

4

0

1i

i

p


  

Thus, the fourth MEPD 4P  is given by  4 0.4068,0.2906,0.1872,0.0966,0.0188P   

Our next aim is to find that maximum entropy probability distribution which is closest to the given probability 

distribution P. 

For this purpose, we use Havrada and Charvat’s [3] directed divergence of order 2 to determine the approximity of the 

distributions to P. We know that Havrada and Charvat’s [3] directed divergence is given by 
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Thus for 2  , we have  
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                                                                                                                     (2.16) 

Using (2.16), we get the following results: 

1( : ) 0.017439D P P  , 2( : ) 0.015286D P P  , 3( : ) 0.010741D P P  , 4( : ) 0.007759D P P   
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Hence, we observe that MEPD 4P is closest to the given probability distribution P. 

Important observations.  We also make out the following observations: 

(a) Since, 2P  is based upon information about mean and 0p  whereas 1P  is based upon information about mean only, 

we must expect that  

2 1( : ) ( : )D P P D P P  

In our case, it is found to be true. 

(b) Since, 3P  is based upon information about mean, 0p  and 1p ,we must expect that  

3 2 1( : ) ( : ) ( : )D P P D P P D P P   

In our case, it is found to be true. 

(c) Since, 4P  is based upon information about the first two moments, whereas 1P  is based upon information about mean 

only, we must expect that  

4 1( : ) ( : )D P P D P P  

In our case, it is found to be true. 

(d) Since, 2P  is based upon information about mean and 0p ,whereas 4P  is based upon mean and second moment and   

4 2( : ) ( : )D P P D P P  

Thus, we conclude that 0P  gives less information than the second moment. 
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