SOME SUBORDINATION PROPERTIS FOR p-VALENT MEROMORPHIC FUNCTIONS ASSOCIATED WITH LINEAR OPERATOR

E. A. ADWAN

[2000] Mathematics Subject Classification: 30C45. p-Valent meromorphic functions, subordination, superordination, linear operator.

Abstract. In this paper, we obtain some subordination and superordination results of p-valent meromorphic functions associated with linear operator. Sandwich-type theorem for these multivalent function is also obtained.

1. Introduction

Let $H(U)$ be the class of functions analytic in $U=\{z \in \mathbb{C}:|z|<1\}$ and $H[a, n]$ be the subclass of $H(U)$ consisting of functions of the form $f(z)=a+a_{n} z^{n}+$ $a_{n+1} z^{n+1}+\ldots$, with $H_{0}=H[0,1]$ and $H=H[1,1]$. Let Σ_{p} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

For $f, F \in H(U)$, the function $f(z)$ is said to be subordinate to $F(z)$, or $F(z)$ is superordinate to $f(z)$, if there exists a function $\omega(z)$ analytic in U with $\omega(0)=0$ and $|\omega(z)|<1(z \in U)$, such that $f(z)=F(\omega(z))$. In such a case we write $f(z) \prec F(z)$. If F is univalent, then $f(z) \prec F(z)$ if and only if $f(0)=F(0)$ and $f(U) \subset F(U)$ (see [12] and [13]).

Let $\phi: \mathbb{C}^{2} \times U \rightarrow \mathbb{C}$ and $h(z)$ be univalent in U. If $p(z)$ is analytic in U and satisfies the first order differential subordination:

$$
\begin{equation*}
\phi\left(p(z), z p^{\prime}(z) ; z\right) \prec h(z) \tag{1.2}
\end{equation*}
$$

then $p(z)$ is a solution of the differential subordination (1.2). The univalent function $q(z)$ is called a dominant of the solutions of the differential subordination (1.2) if $p(z) \prec q(z)$ for all $p(z)$ satisfying (1.2). A univalent dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants of (1.2) is called the best dominant. If $p(z)$ and $\phi\left(p(z), z p^{\prime}(z) ; z\right)$ are univalent in U and if $p(z)$ satisfies the first order differential superordination:

$$
\begin{equation*}
h(z) \prec \phi\left(p(z), z p^{\prime}(z) ; z\right), \tag{1.3}
\end{equation*}
$$

then $p(z)$ is a solution of the differential superordination (1.3). An analytic function $q(z)$ is called a subordinant of the solutions of the differential superordination (1.3) if $q(z) \prec p(z)$ for all $p(z)$ satisfying (1.3). A univalent subordinant
\tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants of (1.3) is called the best subordinant (see [12] and [13]).
For functions $f(z) \in \sum_{p}$ given by (1.1) and $g(z) \in \sum_{p}$ given by

$$
\begin{equation*}
g(z)=z^{-p}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}) \tag{1.4}
\end{equation*}
$$

the Hadamard product (or convolution) of $f(z)$ and $g(z)$, is defined by

$$
\begin{equation*}
(f * g)(z)=z^{-p}+\sum_{k=0}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \tag{1.5}
\end{equation*}
$$

Aouf et al. [3] considered the following linear operator $D_{\lambda, p}^{n}(f * g)(z): \sum_{p} \longrightarrow$ \sum_{p} as follows:

$$
\begin{gather*}
D_{\lambda, p}^{0}(f * g)(z)=(f * g)(z) \tag{1.6}\\
D_{\lambda, p}^{1}(f * g)(z)=D_{\lambda, p}(f * g)(z)=(1-\lambda)(f * g)(z)+\frac{\lambda}{z^{p}}\left(z^{p+1}(f * g)(z)\right)^{\prime} \\
=\frac{1}{z^{p}}+\sum_{k=0}^{\infty}[1+\lambda(k+p)] a_{k} b_{k} z^{k}(\lambda \geq 0 ; p \in \mathbb{N}) \\
D_{\lambda, p}^{2}(f * g)(z)=D_{\lambda, p}\left(D_{\lambda, p}(f * g)\right)(z) \\
=(1-\lambda) D_{\lambda, p}(f * g)(z)+\frac{\lambda}{z^{p}}\left(z^{p+1} D_{\lambda, p}(f * g)(z)\right)^{\prime} \\
=\frac{1}{z^{p}}+\sum_{k=0}^{\infty}[1+\lambda(k+p)]^{2} a_{k} b_{k} z^{k}(\lambda \geq 0 ; p \in \mathbb{N}) \tag{1.7}
\end{gather*}
$$

and (in general)

$$
\begin{align*}
& D_{\lambda, p}^{n}(f * g)(z)=D_{\lambda, p}\left(D_{\lambda, p}^{n-1}(f * g)(z)\right) \\
& \quad=\frac{1}{z^{p}}+\sum_{k=0}^{\infty}[1+\lambda(k+p)]^{n} a_{k} b_{k} z^{k}\left(\lambda \geq 0 ; p \in \mathbb{N} ; n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) \tag{1.8}
\end{align*}
$$

From (1.8) it is easy to verify that:

$$
\begin{equation*}
\lambda z\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{\prime}=D_{\lambda, p}^{n+1}(f * g)(z)-(\lambda p+1) D_{\lambda, p}^{n}(f * g)(z) \quad(\lambda>0) \tag{1.9}
\end{equation*}
$$

It should be remarked that the linear operator $D_{\lambda, p}^{m}(f * g)$ is a generalization of many other linear operators considered earlier. We have:
(1) If we take $g(z)=\frac{1}{z^{p}(1-z)}\left(\right.$ or $\left.b_{k}=1\right)$, then we have the operator $D_{\lambda, p}^{n}(f)(z)$ which was introduced and studied by Aouf et al. [3];
(2) If we take $g(z)=\frac{1}{z^{p}(1-z)} \quad\left(\right.$ or $\left.b_{k}=1\right)$ and $\lambda=1$, then we have the operator $M_{p}^{n}(f)(z)$ which was introduced and studied by Aouf and Hossen [2] and Srivastava and Patel [15];
(3) If we take $n=0$ and $g(z)=z^{-p}+\sum_{k=0}^{\infty} \Psi_{k}\left(\alpha_{1}\right) z^{k}$ (or $\left.b_{k}=\Psi_{k}\left(\alpha_{1}\right)\right)$, where

$$
\begin{equation*}
\Psi_{k}\left(\alpha_{1}\right)=\frac{\left(\alpha_{1}\right)_{k+p} \ldots \ldots\left(\alpha_{q}\right)_{k+p}}{\left(\beta_{1}\right)_{k+p} \ldots\left(\beta_{s}\right)_{k}(1)_{k+p}} \quad\left(q \leq s+1 ; q, s \in \mathbb{N}_{0}\right) \tag{1.10}
\end{equation*}
$$

then the operator $D_{\lambda, p}^{0}(f * g)=(f * g)$ reduces to the operator $H_{p, q, s}\left(\alpha_{1}\right)$ which was introduced and studied by Liu and Srivastava [9]. The operator $H_{p, q, s}\left(\alpha_{1}\right)$ contains the operator $\ell_{p}\left(\alpha_{1}, \beta_{1}\right)[8]$ for $q=2, s=1$, and $\alpha_{2}=1$ and also contains the operator $D^{\nu+p-1}([1],[4])$ for $q=2, s=1$ and $\alpha_{1}=\nu+p(\nu>-p ; p \in$ $\mathbb{N}), \alpha_{2}=1$ and $\beta_{1}=p ;$
(4) If we take $n=0$ and $g(z)=z^{-p}+\sum_{k=0}^{\infty}\left(\frac{l+\gamma(k+p)}{l}\right)^{\mu} z^{k}$
$\left(l>0, \gamma \geq 0, p \in \mathbb{N}, \mu \in \mathbb{N}_{0}\right)$, then the operator $D_{\lambda, p}^{0}(f * g)=(f * g)$ reduces to the operator $J_{p}^{\mu}(\gamma, l)$ which was introduced and studied by El-Ashwah [5];
(5) If we take $n=0$ and $g(z)=z^{-p}+\sum_{k=0}^{\infty}\left(\frac{l}{l+\gamma(k+p)}\right)^{\mu} z^{k}$
$\left(l>0, \gamma \geq 0, p \in \mathbb{N}, \mu \in \mathbb{N}_{0}\right)$, then the operator $D_{\lambda, p}^{0}(f * g)=(f * g)$ reduces to the operator $\mathcal{L}_{p}^{\mu}(\gamma, l)$ which was introduced and studied by El-Ashwah [6].
(6) If we take $n=0$ and $g(z)=z^{-p}+\frac{\Gamma(\alpha+\beta-\gamma+1)}{\Gamma(\beta)} \sum_{k=0}^{\infty}\left(\frac{\Gamma(\beta+p+k)}{\Gamma(\alpha+\beta+p+k-\gamma+1)}\right) \frac{(\mu)_{k+p}}{(k+p)!} z^{k}$ $\mu>0, \beta>0, \alpha>\gamma-1, \gamma>0, p \in \mathbb{N}$, then the operator $D_{\lambda, p}^{0}(f * g)=(f * g)$ reduces to the operator $\mathcal{Q}_{\alpha, \beta, \gamma}^{p, \mu}$ which was introduced and studied by El-Ashwah et al. [7].

To prove our results, we need the following definitions and lemmas.
Definition 1.1 [12]. Denote by \mathcal{F} the set of all functions $q(z)$ that are analytic and injective on $\bar{U} \backslash E(q)$ where

$$
E(q)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} q(z)=\infty\right\}
$$

and are such that $q^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(q)$. Further let the subclass of \mathcal{F} for which $q(0)=a$ be denoted by $\mathcal{F}(a), \mathcal{F}(0) \equiv \mathcal{F}_{0}$ and $\mathcal{F}(1) \equiv \mathcal{F}_{1}$.
Definition 1.2 [13]. A function $L(z, t)(z \in U, t \geq 0)$ is said to be a subordination chain if $L(0, t)$ is analytic and univalent in U for all $t \geq 0, L(z, 0)$ is continuously differentiable on $[0 ; 1)$ for all $z \in U$ and $L\left(z, t_{1}\right) \prec L\left(z, t_{2}\right)$ for all $0 \leq t_{1} \leq t_{2}$.
Lemma 1.1 [14]. The function $L(z, t): U \times[0 ; 1) \longrightarrow \mathbb{C}$ of the form

$$
L(z, t)=a_{1}(t) z+a_{2}(t) z^{2}+\ldots \quad\left(a_{1}(t) \neq 0 ; t \geq 0\right)
$$

and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$ is a subordination chain if and only if

$$
\operatorname{Re}\left\{\frac{z \partial L(z, t) / \partial z}{\partial L(z, t) / \partial t}\right\}>0 \quad(z \in U, t \geq 0)
$$

Lemma 1.2 [10]. Suppose that the function $\mathcal{H}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ satisfies the condition

$$
\operatorname{Re}\{\mathcal{H}(i s ; t)\} \leq 0
$$

for all real s and for all $t \leq-n\left(1+s^{2}\right) / 2, n \in \mathbb{N}$. If the function $p(z)=$ $1+p_{n} z^{n}+p_{n+1} z^{n+1}+\ldots$ is analytic in U and

$$
\operatorname{Re}\left\{\mathcal{H}\left(p(z) ; z p^{\prime}(z)\right)\right\}>0 \quad(z \in U)
$$

then $\operatorname{Re}\{p(z)\}>0$ for $z \in U$.
Lemma 1.3 [11]. Let $\kappa, \gamma \in \mathbb{C}$ with $\kappa \neq 0$ and let $h \in \mathcal{H}(U)$ with $h(0)=$ c. If $\operatorname{Re}\{\kappa h(z)+\gamma\}>0(z \in U)$, then the solution of the following differential equation:

$$
q(z)+\frac{z q^{\prime}(z)}{\kappa q(z)+\gamma}=h(z) \quad(z \in U ; q(0)=c)
$$

is analytic in U and satisfies $\operatorname{Re}\{\kappa q(z)+\gamma\}>0$ for $z \in U$.
Lemma 1.4 [12]. Let $p \in \mathcal{F}(a)$ and let $q(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots$ be analytic in U with $q(z) \neq a$ and $n \geq 1$. If q is not subordinate to p, then there exists two points $z_{0}=r_{0} e^{i \theta} \in U$ and $\zeta_{0} \in \partial U \backslash E(q)$ such that

$$
q\left(U_{r_{0}}\right) \subset p(U) ; \quad q\left(z_{0}\right)=p\left(\zeta_{0}\right) \quad \text { and } \quad z_{0} p^{\prime}\left(z_{0}\right)=m \zeta_{0} p^{\prime}\left(\zeta_{0}\right) \quad(m \geq n)
$$

Lemma 1.5 [13]. Let $q \in \mathcal{H}[a ; 1]$ and $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}$. Also set $\varphi\left(q(z), z q^{\prime}(z)\right)=$ $h(z)$. If $L(z, t)=\varphi\left(q(z), t z q^{\prime}(z)\right)$ is a subordination chain and $q \in H[a ; 1] \cap$ $\mathcal{F}(a)$, then

$$
h(z) \prec \varphi\left(q(z), z q^{\prime}(z)\right),
$$

implies that $q(z) \prec p(z)$. Furthermore, if $\varphi\left(q(z), z q^{\prime}(z)\right)=h(z)$ has a univalent solution $q \in \mathcal{F}(a)$, then q is the best subordinant.

In this paper, we investigate several properties of the linear operator $\mathcal{D}_{\lambda, p}^{n}(f * g)(z)$.

2. Main Results

Unless otherwise mentioned, we assume throughout this section that $\lambda, \alpha, \gamma>$ $0, p \in \mathbb{N}, n \in \mathbb{N}_{0}, z \in U$ and all powers are understood as principle values.
Theorem 2.1. Let $f, g, k, \psi \in \sum_{p}$ and let

$$
\begin{gather*}
\operatorname{Re}\left\{1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}\right\}>-\delta \\
\binom{\phi(z)=(1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)\right)^{\alpha}}{+\gamma\left(\frac{\mathcal{D}_{\lambda, p}^{n+}(k * \psi)(z)}{\mathcal{D}_{\lambda, p}(k * \psi)(z)}\right)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)\right)^{\alpha} ; z \in U} \tag{2.1}
\end{gather*}
$$

where δ is given by

$$
\begin{equation*}
\delta=\frac{(\lambda \gamma)^{2}+\alpha^{2}-\left|(\lambda \gamma)^{2}-\alpha^{2}\right|}{4 \lambda \gamma \alpha} \tag{2.2}
\end{equation*}
$$

Then the subordination condition

$$
\begin{aligned}
& (1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha}+\gamma\left(\frac{\mathcal{D}_{\lambda, p}^{n+1}(f * g)(z)}{\mathcal{D}_{\lambda, p}^{n}(f * g)(z)}\right)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha} \\
\prec & \left.(1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)\right)^{\alpha}+\gamma\left(\frac{\mathcal{D}_{\lambda, p}^{n+1}(k * \psi)(z)}{\mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)}\right)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(k * \psi)(\notin)\right) .3\right)
\end{aligned}
$$

implies that

$$
\begin{equation*}
\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha} \prec\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)\right)^{\alpha} \tag{2.4}
\end{equation*}
$$

and the function $\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(k * \psi)\right)^{\alpha}$ is the best dominant.
Proof. Let us define the functions $F(z)$ and $G(z)$ in U by

$$
\begin{equation*}
F(z)=\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha} \quad \text { and } \quad G(z)=\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)\right)^{\alpha} \quad(z \in U) \tag{2.5}
\end{equation*}
$$

we assume here, without loss of generality, that $G(z)$ is analytic and univalent on \bar{U} and

$$
G^{\prime}(\zeta) \neq 0 \quad(|\zeta|=1)
$$

If not, then we replace $F(z)$ and $G(z)$ by $F(\rho z)$ and $G(\rho z)$, respectively, with $0<\rho<1$. These new functions have the desired properties on \bar{U}, so we can use them in the proof of our result, the results would follow by letting $\rho \rightarrow 1$.

We first show that, if

$$
\begin{equation*}
q(z)=1+\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)} \quad(z \in U) \tag{2.6}
\end{equation*}
$$

then

$$
\operatorname{Re}\{q(z)\}>0 \quad(z \in U)
$$

From (1.9) and the definition of the functions G, ϕ, we obtain that

$$
\begin{equation*}
\phi(z)=G(z)+\frac{\lambda \gamma}{\alpha} z G^{\prime}(z) \tag{2.7}
\end{equation*}
$$

Differentiating both side of (2.7) with respect to z yields

$$
\begin{equation*}
\phi^{\prime}(z)=\left(1+\frac{\lambda \gamma}{\alpha}\right) G^{\prime}(z)+\frac{\lambda \gamma}{\alpha} z G^{\prime \prime}(z) \tag{2.8}
\end{equation*}
$$

Combining (2.6) and (2.8), we easily get

$$
\begin{equation*}
1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}=q(z)+\frac{z q^{\prime}(z)}{q(z)+\frac{\alpha}{\lambda \gamma}}=h(z) \quad(z \in U) \tag{2.9}
\end{equation*}
$$

It follows from (2.1) and (2.9) that

$$
\begin{equation*}
\operatorname{Re}\left\{h(z)+\frac{\alpha}{\lambda \gamma}\right\}>0 \quad(z \in U) \tag{2.10}
\end{equation*}
$$

Moreover, by using Lemma 1.3, we conclude that the differential equation (2.9) has a solution $q(z) \in H(U)$ with $h(0)=q(0)=1$. Let

$$
H(u, v)=u+\frac{v}{u+\frac{\alpha}{\lambda \gamma}}+\delta
$$

where δ is given by (2.2). From (2.9) and (2.10), we obtain

$$
\operatorname{Re}\left\{H\left(q(z) ; z q^{\prime}(z)\right)\right\}>0 \quad(z \in U)
$$

To verify the condition that

$$
\begin{equation*}
\operatorname{Re}\{H(i u ; v)\} \leq 0 \quad\left(u \in \mathbb{R} ; v \leq-\frac{1+u^{2}}{2}\right) \tag{2.11}
\end{equation*}
$$

we proceed as follows:

$$
\begin{aligned}
\operatorname{Re}\{H(i u ; v)\} & =\operatorname{Re}\left\{i u+\frac{v}{i u+\frac{\alpha}{\lambda \gamma}}+\delta\right\}=\frac{\frac{\alpha}{\lambda \gamma} v}{u^{2}+\left(\frac{\alpha}{\lambda \gamma}\right)^{2}}+\delta \\
& \leq-\frac{\sigma(u, \lambda, \alpha, \delta)}{2\left[u^{2}+\left(\frac{\alpha}{\lambda \gamma}\right)^{2}\right]},
\end{aligned}
$$

where

$$
\begin{equation*}
\sigma(u, \lambda, \alpha, \delta)=\left[\frac{\alpha}{\lambda \gamma}-2 \delta\right] s^{2}-2 \delta\left(\frac{\alpha}{\lambda \gamma}\right)^{2}+\frac{\alpha}{\lambda \gamma} . \tag{2.12}
\end{equation*}
$$

For δ given by (2.2), we note that the expression $\sigma(u, \lambda, \alpha, \delta)$ in (2.12) is positive, which implies that (2.11) holds. Thus, by using Lemma 1.2, we conclude that

$$
\operatorname{Re}\{q(z)\}>0 \quad(z \in U)
$$

that is, that $G(z)$ defined by (2.5) is convex (univalent) in U. Next, we prove that the subordination condition (2.3) implies that

$$
F(z) \prec G(z),
$$

for the functions F and G defined by (2.5). Consider the function $L(z, t)$ given by

$$
\begin{equation*}
L(z, t)=G(z)+\frac{\lambda \gamma(1+t)}{\alpha} z G^{\prime}(z) \quad(0 \leq t<\infty ; z \in U) \tag{2.13}
\end{equation*}
$$

We note that

$$
\left.\frac{\partial L(z, t)}{\partial z}\right|_{z=0}=G^{\prime}(0)\left(1+\frac{\lambda \gamma(1+t)}{\alpha}\right) \neq 0 \quad(0 \leq t<\infty ; z \in U)
$$

This show that the function

$$
L(z, t)=a_{1}(t) z+\ldots
$$

satisfies the condition $a_{1}(t) \neq 0 \quad(0 \leq t<\infty)$. Further, we have

$$
\operatorname{Re}\left\{\frac{z \partial L(z, t) / \partial z}{\partial L(z, t) / \partial t}\right\}=\operatorname{Re}\left\{\frac{\alpha}{\lambda \gamma}+(1+t) q(z)\right\}>0 \quad(0 \leq t<\infty ; z \in U)
$$

Therefore, by using Lemma 1.1, we deduce that $L(z, t)$ is a subordination chain. It follows from the definition of subordination chain that

$$
\phi(z)=G(z)+\frac{\lambda \gamma}{\alpha} z G^{\prime}(z)=L(z, 0)
$$

and

$$
L(z, 0) \prec L(z, t) \quad(0 \leq t<\infty)
$$

which implies that

$$
\begin{equation*}
L(\zeta, t) \notin L(U, 0)=\phi(U) \quad(0 \leq t<\infty ; \zeta \in \partial U) \tag{2.14}
\end{equation*}
$$

If F is not subordinate to G, by using Lemma 4, we know that there exist two points $z_{0} \in U$ and $\zeta_{0} \in \partial U$ such that

$$
\begin{equation*}
F\left(z_{0}\right)=G\left(\zeta_{0}\right) \quad \text { and } \quad z_{0} F^{\prime}\left(z_{0}\right)=(1+t) \zeta_{0} G^{\prime}\left(\zeta_{0}\right) \quad(0 \leq t<\infty) \tag{2.15}
\end{equation*}
$$

Hence, by virtue of $(2.3),(2.5),(2.13)$ and (2.15), we have

$$
\begin{aligned}
& L\left(\zeta_{0}, t\right)=G\left(\zeta_{0}\right)+\frac{\lambda \gamma(1+t) z G^{\prime}\left(\zeta_{0}\right)}{\alpha} \\
&=F\left(z_{0}\right)+\frac{\lambda \gamma z_{0} F^{\prime}\left(z_{0}\right)}{\alpha} \\
&=(1-\gamma)\left(z_{0}^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)\left(z_{0}\right)\right)^{\alpha} \\
&+\gamma\left(\frac{\mathcal{D}_{\lambda, p}^{n+1}(f * g)\left(z_{0}\right)}{\mathcal{D}_{\lambda, p}^{n}(f * g)\left(z_{0}\right)}\right)\left(z_{0}^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)\left(z_{0}\right)\right)^{\alpha} \in \phi(U) .
\end{aligned}
$$

TThis contradicts (2.14). Thus, we deduce that $F \prec G$. Considering $F=G$, we see that the function G is the best dominant. This completes the proof of Theorem 2.1.

We now derive the following superordination result.
Theorem 2.2. Let $f, g, k, \psi \in \sum_{p}$ and let

$$
\begin{gather*}
\operatorname{Re}\left\{1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}\right\}>-\delta \\
\binom{\phi(z)=(1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)\right)^{\alpha}}{+\gamma\left(\frac{\mathcal{D}_{\lambda, p}^{n+1}(k * \psi)(z)}{\mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)}\right)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)\right)^{\alpha}} \tag{2.16}
\end{gather*}
$$

where δ is given by (2.2). If the function

$$
(1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha}+\gamma\left(\frac{\mathcal{D}_{\lambda, p}^{n+1}(f * g)(z)}{\mathcal{D}_{\lambda, p}^{n}(f * g)(z)}\right)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha}
$$

is univalent in U and $\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha} \in \mathcal{F}$, then the superordination condition

$$
\begin{aligned}
& (1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)\right)^{\alpha}+\gamma\left(\frac{\mathcal{D}_{\lambda, p}^{n+1}(k * \psi)(z)}{\mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)}\right)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)\right)^{\alpha} \\
\prec & (1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha}+\gamma\left(\frac{\mathcal{D}_{\lambda, p}^{n+1}(f * g)(z)}{\mathcal{D}_{\lambda, p}^{n}(f * g)(z)}\right)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha}
\end{aligned}
$$

implies that

$$
\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)\right)^{\alpha} \prec\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha}
$$

and the function $\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(k * \psi)(z)\right)^{\alpha}$ is the best subordinant.

Proof. Suppose that the functions F, G and q are defined by (2.5) and (2.6), respectively. By applying the similar method as in the proof of Theorem 2.1, we get

$$
\operatorname{Re}\{q(z)\}>0 \quad(z \in U)
$$

Next, to arrive at our desired result, we show that $G \prec F$. For this, we suppose that the function $L(z, t)$ be defined by (2.13). Since G is convex, by applying a similar method as in Theorem 1, we deduce that $L(z, t)$ is subordination chain. Therefore, by using Lemma 5, we conclude that $G \prec F$. Moreover, since the differential equation

$$
\phi(z)=G(z)+\frac{\lambda \gamma}{\alpha} z G^{\prime}(z)=\varphi\left(G(z), z G^{\prime}(z)\right)
$$

has a univalent solution G, it is the best subordinant. This completes the proof of Theorem 2.2.

Combining the above-mentioned subordination and superordination results involving the operator $\mathcal{D}_{\lambda, p}^{n}(f * g)$, the following "sandwich-type result" is derived. Theorem 2.3. Let $f, g, k_{j}, \psi_{j} \in \sum_{p}(j=1,2)$ and let

$$
\begin{gathered}
\operatorname{Re}\left\{1+\frac{z \phi_{j}^{\prime \prime}(z)}{\phi_{j}^{\prime}(z)}\right\}>-\delta \\
\binom{\phi_{j}(z)=(1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}\left(k_{j} * \psi_{j}\right)(z)\right)^{\alpha}}{+\gamma\left(\frac{\mathcal{D}_{\lambda, p}^{n+1}\left(k_{j} * \psi_{j}\right)(z)}{\mathcal{D}_{\lambda, p}^{n}\left(k_{j} * \psi_{j}\right)(z)}\right)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}\left(k_{j} * \psi_{j}\right)(z)\right)^{\alpha}(j=1,2)},
\end{gathered}
$$

where δ is given by (2.2). If the function

$$
(1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha}+\gamma\left(\frac{\mathcal{D}_{\lambda, p}^{n+1}(f * g)(z)}{\mathcal{D}_{\lambda, p}^{n}(f * g)(z)}\right)\left(z^{p} \mathcal{D}_{\lambda, p}^{n \theta}(f * g)(z)\right)^{\alpha}
$$

is univalent in U and $\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha} \in \mathcal{F}$, then the condition

$$
\begin{aligned}
& (1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}\left(k_{1} * \psi_{1}\right)(z)\right)^{\alpha}+\gamma \frac{\mathcal{D}_{\lambda, p}^{n+1}\left(k_{1} * \psi_{1}\right)(z)}{\mathcal{D}_{\lambda, p}^{n}\left(k_{1} * \psi_{1}\right)(z)}\left(z^{p} \mathcal{D}_{\lambda, p}^{n}\left(k_{1} * \psi_{1}\right)(z)\right)^{\alpha} \\
\prec & (1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha}+\gamma\left(\frac{\mathcal{D}_{\lambda, p}^{n+1}(f * g)(z)}{\mathcal{D}_{\lambda, p}^{n}(f * g)(z)}\right)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha} \\
\prec & (1-\gamma)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}\left(k_{2} * \psi_{2}\right)(z)\right)^{\alpha}+\gamma\left(\frac{\mathcal{D}_{\lambda, p}^{n+1}\left(k_{2} * \psi_{2}\right)(z)}{\mathcal{D}_{\lambda, p}^{n}\left(k_{2} * \psi_{2}\right)(z)}\right)\left(z^{p} \mathcal{D}_{\lambda, p}^{n}\left(k_{2} * \psi_{2}\right)(z)\right)^{\alpha}
\end{aligned}
$$

implies that

$$
\left(z^{p} \mathcal{D}_{\lambda, p}^{n}\left(k_{1} * \psi_{1}\right)(z)\right)^{\alpha} \prec\left(z^{p} \mathcal{D}_{\lambda, p}^{n}(f * g)(z)\right)^{\alpha} \prec\left(z^{p} \mathcal{D}_{\lambda, p}^{n}\left(k_{2} * \psi_{2}\right)(z)\right)^{\alpha}
$$

and the functions $\left(z^{p} \mathcal{D}_{\lambda, p}^{\alpha}\left(k_{1} * \psi_{1}\right)(z)\right)^{\mu}$ and $\left(z^{p} \mathcal{D}_{\lambda, p}^{\alpha}\left(k_{2} * \psi_{2}\right)(z)\right)^{\mu}$ are , respectively, the best subordinant and the best dominant.

Remark 1. Specializing n, λ and $g(z)$ in the above results, we obtain the corresponding results for the corresponding operators (1-6) defined in the introduction.

Acknowledgment. The author would like to thank the Prof. Dr. M.K. Aouf and Dr. A.O. Mostafa, for yuor valiable suggestions..

References

[1] Aouf, M.K.: New certeria for multivalent meromorphic starlike functions of order alpha, Proc. Japan. Acad., 69 (1993), 66-70.
[2] Aouf, M.K. and Hossen, H.M.: New certeria for meromorphic p-valent starlike functions Tsukuba J. Math., 17 (1993), no. 2, 481-486.
[3] Aouf, M. K.:, Shamandyn, A.:, Mostafa, A. O. and Madian, S. M.:, Properties of some families of meromorphic p-valent functions involving certain differential operator, Acta Univ. Apulensis, 20 (2009), 7-16.
[4] Aouf, M. K.: and Srivastava, H.M.:, A new criterion for meromorphically p-valent convex functions of order alpha, Math. Sci. Research Hot-Line, 1 (1997), no. 8, 7-12.
[5] El-Ashwah, R. M.: A note on certain meromorphic p-valent functions, Appl. Math. Letters, 22 (2009), 1756-1759.
[6] El-Ashwah, R. M.:, Properties of certain class of p-Valent meromorphic functions associated with new Integral operator, Acta Univ. Apulensis, 29 (2012), 255-264.
[7] El-Ashwah, R. M.:, Aouf, M. K.: and Abd-Eltawab, A. M.:, On certain classes of p-valent meromorphic functions associated with a family of Integral operators, European J. Math. Sci., 2(2013). no. 1, 85-90.
[8] Liu, J.-L.: and Srivastava, H.M.:, A linaer operator and associated with the generalized hypergeometric function, J. Math. Anal. Appl., 259 (2000), 566-581.
[9] Liu, J.-L.: and Srivastava, H.M.:, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling, 39 (2004), 21-34.
[10] Miller, S. S.: and Mocanu, P. T.: Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), no. 2, 157-172.
[11] Miller, S. S.: and Mocanu, P. T, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations, 56 (1985), no. 3, 297-309.
[12] Miller, S. S.: and Mocanu, P. T, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.
[13] S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Variables. Theory Appl., 48 (2003), no. 10, 815-826.
[14] Pommerenke, Ch.:, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[15] Srivastava, H.M.: and Patel, J.:, Applications of differential subordinations to certain classes of meromorphically multivalent functions, J. Ineq. Pure Appl. Math., 6 (2005), no. 3, 1-15.
E. A. Adwan: Common First Year, Saudi Electronic University,, Riyadh, Saudi AraBIA

E-mail address: eman.a2009@yahoo.com \e.adwan@seu.edu.sa

