American Journal Mathematics and Sciences
Vol. 9 (January-December, 2020)

SOME SUBORDINATION PROPERTIS FOR p—VALENT
MEROMORPHIC FUNCTIONS ASSOCIATED WITH LINEAR
OPERATOR

E. A. ADWAN

[2000] Mathematics Subject Classification: 30C45. p-Valent meromorphic func-
tions, subordination, superordination, linear operator.

ABSTRACT. In this paper, we obtain some subordination and superordination
results of p—valent meromorphic functions associated with linear operator.
Sandwich-type theorem for these multivalent function is also obtained .

1. Introduction

Let H(U) be the class of functions analyticin U = {z € C: |z| < 1} and H][a,n]
be the subclass of H(U) consisting of functions of the form f(z) = a + a,z"+
an+12" T+ ., with Hy = H[0,1] and H = H[1,1]. Let ¥, denote the class of
functions of the form:

£(2) :z—P+§0akz’f (peN={1,2.1), (1.1)

For f,F € H(U), the function f(z) is said to be subordinate to F(z), or F(z) is
superordinate to f(z), if there exists a function w(z) analytic in U with w(0) =0
and |w(z)| < 1(z € U), such that f(z) = F(w(2)). In such a case we write
f(z) < F(z). If F is univalent, then f(z) < F(z) if and only if f(0) = F(0) and
f(U) Cc F(U) (see [12] and [13]).

Let ¢ : C2 x U — C and h(z) be univalent in U. If p(z) is analytic in U and
satisfies the first order differential subordination:

¢(p(2).20 (2)52) < h(2), (1:2)

then p(z) is a solution of the differential subordination (1.2). The univalent func-
tion ¢ (z) is called a dominant of the solutions of the differential subordination
(1.2) if p(2) < q(z) for all p(z) satisfying (1.2). A univalent dominant ¢ that
satisfies ¢ < ¢ for all dominants of (1.2) is called the best dominant. If p(z) and
0] (p (z),2p (2) ;z) are univalent in U and if p(z) satisfies the first order differen-

tial superordination:

h(z) =<0 (p(2), 20 (2);2) (1.3)
then p (2) is a solution of the differential superordination (1.3). An analytic func-
tion ¢ (z) is called a subordinant of the solutions of the differential superordina-

(
tion (1.3) if ¢(2) < p(z) for all p(z) satisfying (1.3). A univalent subordinant
1
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G that satisfies ¢ < ¢ for all subordinants of (1.3) is called the best subordinant
(see [12] and [13]).
For functions f(z) € >_, given by (1.1) and g(2) € >_, given by

g(2) :zprrZakzk (peN), (1.4)
k=0
the Hadamard product (or convolution) of f(z) and g(z), is defined by
(f*9)(2) =277+ ) awbpz" = (g% f) (2). (1.5)
k=0

Aouf et al. [3] considered the following linear operator DY , (f*g)(2) : >0, —
>, as follows:

D3, (f 9)(2) = (f * 9)(2), (1.6)
Dyp(fx9)(z) = Dap(fxg)(2) =1 =N(f*9)(2) + 2 (1 g)(2))’

zP

1 oo
= S+ ;[1 + Ak + p)|agbrz® (A > 0; peN),
=0

D3,(f+9)(z) = Day(Daglf ) (2)
= (1= NDay(F *0)(2) + (7 Da (T % 0)(2))

1 oo
= — + > [+ Mk +p)Parbez® (A >0; peN),  (L7)
P k=0

and ( in general )

D}, (£x9)(2) = Dap(D3 ' (fx9)(2))

1 oo
=+ > [+ AE+p)"axbez® (A>0; peN; neNg=NU{0}).  (1.8)
k=0

From (1.8) it is easy to verify that:

Ne(DR,(f + 9)(2)) = D3EN(f % 9)(2) = O + 1)D5 ,(f * 9)(2) (A >0). (L9)

It should be remarked that the linear operator Df\’fp( f *g) is a generalization of
many other linear operators considered earlier. We have:

(1) If we take g(z) = m (or by, = 1), then we have the operator D} _(f)(z)
which was introduced and studied by Aouf et al. [3];

(2) If we take g(z) = m (or b, = 1) and A = 1, then we have the operator
M (f)(z) which was introduced and studied by Aouf and Hossen [2] and Srivastava
and Patel [15];
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o0
(3) If we take n = 0 and g(2) = 277 + > Ui(ay)zF (or by = VU(a1)), where
k=0

_ (@) pgpen(0g) ktp < ,

\I/k(()él) (ﬁl)ker...(ﬁs)k (1)k+p (q_ s+ 1;q,s EN()), (110)
then the operator DY | (f *g) = (f * g) reduces to the operator Hy, 45 (a1) which
was introduced and studied by Liu and Srivastava [9]. The operator Hj g s (a1)
contains the operator ¢,(aq, () [8] for ¢ =2,s =1, and as = 1 and also contains
the operator D*™P~1 ([1], [4]) for ¢ = 2,s =l and oy =v+p (v > —p; p €
N), ag=1and 8, =p

(4) If we take n =0 and g(z) =277 + Z (l+7 k+p))

(1>0,v>0, peN, ueNy), then the operator D » ([ *9) = (f * g) reduces
to the operator J} (v,1) which was introduced and studled by El-Ashwah [5];

(5) If we take n = 0 and g(z) = 27 P + Z (H—'y k+p))u 2

(1>0,v>0, peN, ueNy), then the operator Dg)p (f *xg) = (f * g) reduces
to the operator £ (7,1) which was introduced and studied by El-Ashwah [6].

_ « — = k (1)
(6) 1 we take n = 0 and (=) = =77+ KRGt 55 (rfammith s ) et

w>0,8>0 a>v—1,v>0,p €N, then the operator Dg\’p (fxg) = (fxg)
reduces to the operator QZ”%’ . which was introduced and studied by El-Ashwah
et al. [7].

To prove our results, we need the following definitions and lemmas.
Definition 1.1 [12]. Denote by F the set of all functions q(z) that are analytic
and injective on U\E(q) where

E(q) = {C €0U : lim g(2) = OO}

and are such that ¢ (¢) # 0 for ¢ € QU\E(q). Further let the subclass of F for
which q(0) = a be denoted by F(a), F(0) = Fy and F(1) = F;.

Definition 1.2 [13]. 4 function L (z,t) (z € U,t > 0) is said to be a subordination
chain if L(0,t) is analytic and univalent in U for all t > 0, L (z,0) is continuously
differentiable on [0;1) for all z € U and L(z,t1) < L(z,t2) for all 0 <t; < ts.
Lemma 1.1 [14]. The function L(z,t) : Ux [0;1) — C of the form

L(zt)=a(t)z+ax(t)2® +... (ay(t) #0;t>0)

and tlim |ay (t)] = oo is a subordination chain if and only if
20L (z,t) /0%
Re{ L(z.1) /ot

Lemma 1.2 [10]. Suppose that the function H : C? — C satisfies the condition

}>O (z€U,t>0).

Re {H (is;t)} <0
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for all real s and for all t < —n(1+s%) /2, n € N. If the function p(z) =
1+ pn2™ + puyp12" T + ... is analytic in U and

Re {H (p(z);zp/(z))} >0 (zel),

then Re{p(z)} > 0 for z € U.

Lemma 1.3 [11]. Let x,v € C with k # 0 and let h € H(U) with h(0) =
c. If Re{rh(z)+~} > 0(z €U), then the solution of the following differential
equation:

A2 (2) =h(z) (z ; =c
1)+ iy = k() (e Uia(0) =)

is analytic in U and satisfies Re{kq(z) +~v} >0 for z € U.

Lemma 1.4 [12]. Let p € F(a) and let q(2) = a+a,z" +an112" " +...be analytic
in U with q(2) # a and n > 1. If q is not subordinate to p, then there exists two
points zg = roe’® € U and ¢, € OU\E(q) such that

a(Us,) Cp(U); a(z) =p(Co) and  z0p (20) = mCop' (o) (m = ).
Lemma 1.5 [13]. Let ¢ € H[a;1] and ¢ : C2 — C. Also set ¢ (q(z) ,2q (z)) =

h(z). If L(z,t)=¢ (q (2),tzq (z)) is a subordination chain and q € H[a;1] N
F(a), then

h(z) < ¢ (a(2).2q (),
implies that q(z) < p(z). Furthermore, if ¢ (q (2),2¢ (z)) = h(z) has a univa-

lent solution q € F(a), then q is the best subordinant.

In this paper, we investigate several properties of the linear operator DY , (f*g)(2) I

2. Main Results

Unless otherwise mentioned, we assume throughout this section that A\, .,y >
0,p € Nyn € Ny, z € U and all powers are understood as principle values.
Theorem 2.1. Let f,g,k,¢ € 3, and let

Re{ +Z¢ ()}>—5
¢ (2)
(ZPD)\ (k=) ( )a
ﬂ(%)(”%(mwu)a;zev |

where § is given by

) +a? = | (1) — 2|

6:
4 va

(2.2)
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Then the subordination condition
o DY (fxg) (2
(1—7) (2PD, (f*9) (2))" +~ (M

Dxp(f*g)@)> (" D3, (f % 9) (2))

Dyt (k) (2)

. quﬂD%AkMMQDQ+V<Eﬁ7fEBES

) ("D, (k * v) (41)3)
implies that

(2"D5, (f % 9) (2))" < ("D}, (k*9) (2))" (2.4)
and the function (prg,p (k = w))a is the best dominant.
Proof. Let us define the functions F(z) and G(z) in U by

F(z) = ("D}, (f*9) (2))" and  G(z2) = (D}, (k) (2))" (2 €0),
(2.5)
we assume here, without loss of generality, that G(z) is analytic and univalent on
U and
GQ#0  (K=1).

If not, then we replace F'(z) and G(z) by F(pz) and G(pz), respectively, with
0 < p < 1. These new functions have the desired properties on U, so we can use
them in the proof of our result, the results would follow by letting p — 1.

We first show that, if

(zeU), (2.6)

then
Re{q()} >0 (z€U).
From (1.9) and the definition of the functions G, ¢, we obtain that

A /
6(2) = G(2) + L2 (2). (2.7)
Differentiating both side of (2.7) with respect to z yields
, )\ , >\ 7"
¢ (2) = (1 + %) G (2) + ;7 2G (). (2.8)

Combining (2.6) and (2.8), we easily get

eI IC I
1+ 50 —q()+q(z)+%—h() (2 €U). (2.9)
It follows from (2.1) and (2.9) that
Re{h(z)Jr%} >0 (zeU). (2.10)

Moreover, by using Lemma 1.3, we conclude that the differential equation (2.9)
has a solution ¢ (z) € H (U) with 2 (0) = ¢(0) = 1. Let

H (u,v) =u+

o +57
u-f—)\—7
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where 0 is given by (2.2). From (2.9) and (2.10), we obtain
Re{H (q(z);zq/(z))} >0 (z€U).

To verify the condition that

2
Re{H (iu;v)} <0 (u eR;v < 1l —|—2u ) ) (2.11)
we proceed as follows:
2
Re{H (iu;v)} = Reliu+ - Y —+6p = %—I—é
iu+ 55 w2 + i)
Ay
o (u, A\ 0)
— 2 )
e
where )
Q@ «@ @
=|— 205" —25 | — —. 2.12
o (u, N\ ,d) {)\7 5]5 6()«)/) +>\’y (2.12)

For § given by (2.2), we note that the expression o (u, A, o, §) in (2.12) is positive,
which implies that (2.11) holds. Thus, by using Lemma 1.2, we conclude that

Re{q(2)} >0 (z€U).

that is, that G (z) defined by (2.5) is convex (univalent) in U. Next, we prove that
the subordination condition (2.3) implies that

F(z) <G(2),
for the functions F' and G defined by (2.5). Consider the function L (z,t) given by

L(zj)zG(z)—&—WzG/(z) O<t<oszel).  (213)
We note that
OL(zt) :G’(o)(1+M);Ao (0<t<o0;zel).
0z |, @

This show that the function
L(z,t)=a1(t)z+ ...,
satisfies the condition a; (t) # 0 (0 < ¢ < o0). Further, we have

Re{%}:%{%ﬂlﬂ)q(@}m (0<t<oozel).

Therefore, by using Lemma 1.1, we deduce that L (z,t) is a subordination chain.
It follows from the definition of subordination chain that

6(:) =G () + 226 (5) = L (2,0),

and
L(z,0) < L(zt) (0<t<o0),
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which implies that
L(¢t)¢ L({U0)=0U) (0<t<oo;¢e€dl). (2.14)

If F is not subordinate to G, by using Lemma 4, we know that there exist two
points 2y € U and (, € U such that

F(z)=G(() and zF (20)=(1+1)¢(G () (0<t<oo). (215)
Hence, by virtue of (2.3), (2.5), (2.13) and (2.15), we have

N Ay (14 t;zG/ (o)

L(Co:t) = G(Co)

- F (ZO) + )\/YZUZ (ZO)

= (1—=9) (D8, (f*9) (20))"

DL 9 o) (o rl e
(Dﬁ,p<f*g><zo>>(zop“’(f D) e

TThis contradicts (2.14). Thus, we deduce that F' < G. Considering F' = G, we
see that the function G is the best dominant. This completes the proof of Theorem
2.1.

We now derive the following superordination result.
Theorem 2.2. Let f,g,k, ¢ € 3, and let

Re 1+Z, (2) > —0
¢ (2)
6(2) = (1=7) (D3, (k) (=)
DY (k) (2) n R
+v (W) (Z”DM (k* 1) (Z))
where § is given by (2.2). If the function

Dy (fx9)(2)
DY, (f*9) (2)

(2.16)

(1=7) ("D}, (f*x9) (2)" + ( ) (=D}, (f x9) (2))"

is univalent in U and (zij\lyp (f*g) (z))a € F, then the superordination condi-
tion

Dy, (k) (2)
DX, (kx9) (2)
Dyy (fx9) (2)
Dy, (fx9)(2)

(1 =) (PD%, (k) (2)" +7 ( ) (="D%, (k% ¥) (2))"

< (1=7) (2PDR, (f % 9) ()" + ( ) ("D}, (f % 9) (2))"

implies that
(PDX,, (k%) (2))" < (YD, (F *9) (2))"
and the function (prg,p (k1) (z))a is the best subordinant.
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Proof. Suppose that the functions F,G and ¢ are defined by (2.5) and (2.6),
respectively. By applying the similar method as in the proof of Theorem 2.1, we
get
Re{q(2)} >0 (z€U).

Next, to arrive at our desired result, we show that G < F. For this, we suppose
that the function L (z,t) be defined by (2.13). Since G is convex, by applying a
similar method as in Theorem 1, we deduce that L (z,¢) is subordination chain.
Therefore, by using Lemma 5, we conclude that G < F. Moreover, since the
differential equation

6(z) =G (2) + %za’ (2) = ¢ (G ()26 (2))

has a univalent solution G, it is the best subordinant. This completes the proof of
Theorem 2.2.

Combining the above-mentioned subordination and superordination results in-
volving the operator DY (f * g), the following "sandwich-type result" is derived.
Theorem 2.3. Let f,g,k;, ;€ >0, (7 =1,2) and let

0 (2) = (1 =) (2D, (ks +4;) ()
o (L))f;) (=03, (k v) () (G=12) |

(k
where § is given by (2.2). If the function
DY (f#g) ()
DY, (f*9)(2)

is univalent in U and (zpDKp (fx9) (z)) € F, then the condition

o n+1 kl «1y) (2
(1 —7) (zPDY, (k1 % 9b1) (2))" + Dﬁp ((k1 . ;/11 ) (Z))

[0}

(1 =) ("D, (f x9) (2)" + ( ) (=PD}% (F * 9) (2))

(2PDR , (k1 * 1) ()

o DnJrl * o
< (1—7) ("D}, (f*9) (2)) +7<Dn Y g ) (zPD%, (f*9) (2))

Dy (kz *%) z)
p (k2% ¥5) (2)

< (1=7) ("D}, (k2 % 42) (2))" +7 ( ) (2"D5., (k2 % 5) (2))°

implies that
(2PDX (k1% 991) (2))" < (2PDR, (f * 9) (2)" < (D5, (k2 * 1) (2))"
and the functions (zp’Di"p (k1 % 1y) (z))u and (ZPDK‘VP (ko * 1g) (z))ﬂ are , re-

spectively, the best subordinant and the best dominant.
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Remark 1. Specializing n, A and ¢ (z) in the above results, we obtain the corre-
sponding results for the corresponding operators (1-6) defined in the introduction.
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