ON FACTORIZATION OF ENTIRE ALGEBROIDAL FUNCTIONS

J. L. Sharma
Department of Mathematics
G. G. M. Science College, Jammu - 180001
email: jagdishlalsharma66@gmail.com

Abstract

In this paper we introduce the concept of primeness and pseudo-primeness in divisor sense for entire algebroidal functions. We also show that prime entire algebroidal functions may not be prime in divisor sense and vice versa.

Key words: algebroidal functions, entire functions, primeness in divisor sense, factorization.

AMS Subject Classification: 30D05.

1. INTRODUCTION AND PRELIMINARIES

Let $W(z)$ be a k-valued function defined by the following irreducible equation:
$\mathrm{A}_{\mathrm{k}}(\mathrm{z}) \mathrm{W}^{\mathrm{k}}(\mathrm{z})+\mathrm{A}_{\mathrm{k}-1}(\mathrm{z}) \mathrm{W}^{\mathrm{k}-1}(\mathrm{z})+\ldots+\mathrm{A}_{0}(\mathrm{z})=0 \ldots$
where $\mathrm{A}_{\mathrm{k}}(\mathrm{z}) \equiv / 0$, all $\mathrm{A}_{\mathrm{i}}(\mathrm{z}),(\mathrm{i}=0,1,2, \ldots, \mathrm{k})$ are entire functions and have no common zeros.
If at least one of $A_{i}(z)(i=0,1, \ldots, k)$ is transcendental then $W(z)$ is called k-valued strictly algebroidal function. Further, if $A_{k}(z) \equiv 1$, then $W(z)$ is called k-valued entire strictly algebrodial function. If all the $A_{i}(z)(i=0,1, \ldots, k)$ are polynomials, at least one of which is non-constant, then $W(z)$ is called a kvalued algebraic function. If all the $A_{i}(z)(i=0,1, \ldots, k)$ are at most linear, at least one of which is nonconstant, then $\mathrm{W}(\mathrm{z})$ is called a k -valued linear algebraic function.
Throughout this paper, we call $W(z)$ an algebroidal function if it is either strictly algebroidal or algebraic or linear algebraic unless otherwise stated.

We next give definition of zeros of some order of algebroidal functions.
Definition 1.1: Let $W(z)$ be a k-valued algebroidal function. Then z_{0} is called a zero of $W(z)$ of order n if there exists a positive integer m such that

$$
\left[\left|\frac{\mathrm{m}}{\mathrm{k}}\right|\right]=\mathrm{n}\left(\left[\left|\frac{\mathrm{~m}}{\mathrm{k}}\right|\right] \text { denotes the smallest int eger } \geq \mathrm{x}\right)
$$

and $W(z)=\left(z-z_{0}\right)^{\frac{m}{k}} W_{0}(z)$, where $W_{0}(z)$ is at most k-valued algebroidal function with $W_{0}\left(z_{0}\right) \neq 0$.
We now state some fundamental concepts of factorization of algebroidal functions as extensions of meromorphic functions case (Sec [1], [2]).

Definition 1.2: Let $W(z)$ be a k-valued algebroidal function, which can be expressed as

$$
\begin{equation*}
\mathrm{W}(\mathrm{z})=\mathrm{W}_{0}(\mathrm{~g}(\mathrm{z})) \tag{1.2}
\end{equation*}
$$

ON FACTORIZATION OF ENTIRE ALGEBROIDAL FUNCTIONS

where $\mathrm{W}_{0}(\mathrm{z})$ is a k_{0}-valued algebroidal function, $\mathrm{k}_{0} \leq \mathrm{k}, \mathrm{g}(\mathrm{z})$ is an entire function (if $\mathrm{W}_{0}(\mathrm{z})$ is a $\mathrm{k}_{0}-$ valued algebraic function, $g(z)$ can be a meromorphic function). Then (1.2) is called a composite factorization of $W(z)$. $W_{0}(z)$ and $g(z)$ are called left and right factors of $W(z)$, respectively.

Definition 1.3 Let $W(z)$ be a k-valued algebroidal function. If every factorization of $W(z)$ of the form (1.2) must imply that either $\mathrm{g}(\mathrm{z})$ is linear (respectively $\mathrm{g}(\mathrm{z})$ is a polynomial) or $\mathrm{W}_{0}(\mathrm{z})$ is a k_{0}-valued linear algebraic function (respectively $\mathrm{W}_{0}(\mathrm{z})$ is a k_{0}-valued algebraic function), then $\mathrm{W}(\mathrm{z})$ is called prime (respectively pseudo-prime). If every factorization of $W(z)$ of the form (1.2) either implies that $\mathrm{g}(\mathrm{z})$ is a polynomial or $\mathrm{W}_{0}(\mathrm{z})$ is a k_{0}-valued linear algebraic function, then $\mathrm{W}(\mathrm{z})$ is called left-prime.

Definition 1.4: Let $\mathrm{W}(\mathrm{z})$ be a k-valued algebroidal function defined by (1.1).
(i) If $\frac{A_{i}(z)}{A_{k}(z)}(i=0,1, \ldots, k-1)$ have no non-linear (respectively transcendental) entire function as common right factor or the only possible left factors of $\frac{A_{i}(z)}{A_{k}(z)}(i=0,1, \ldots, k-1)$ are bilinear, then $\mathrm{W}(\mathrm{z})$ is called prime (respectively left-prime).
(ii) If $\frac{\mathrm{A}_{\mathrm{i}}(\mathrm{z})}{\mathrm{A}_{\mathrm{k}}(\mathrm{z})}(\mathrm{i}=0,1, \ldots, \mathrm{k}-1)$ have no transcendental meromorphic function as common right factor or the only possible left factors of $\frac{A_{i}(z)}{A_{k}(z)}(i=0,1, \ldots, k-1)$ are rational functions, then $\mathrm{W}(\mathrm{z})$ is called pseudo-prime.

We now extend the definition of primeness and pseudo-primeness in divisor sense of entire functions (see [3], [4], [5], [6]) to entire algebroidal functions.

Definition 1.5: Let $W(z)$ be a k-valued entire algebroidal function with zeros. If $W(z)$ can be expressed as

$$
\begin{equation*}
\mathrm{W}(\mathrm{z})=\mathrm{W}_{0}(\mathrm{~g}(\mathrm{z})) \mathrm{e}^{(\mathrm{z}),} \tag{1.3}
\end{equation*}
$$

where $W_{0}(\mathrm{z})$ is k_{0}-valued entire algebroidal function, $\mathrm{k}_{0} \leq \mathrm{k}, \mathrm{g}(\mathrm{z})(\equiv$ constant $)$ and $\square(\mathrm{z})$ are entire functions, then the expression (1.3) is called a composite factorization of $\mathrm{W}(\mathrm{z})$ in divisor sense. $\mathrm{W}_{0}(\mathrm{z})$ and $g(z)$ are called left and right factors, respectively, of $W(z)$ in divisor sense.

Definition 1.6: Let $W(z)$ be a k-valued entire algebroidal function with zeros. If every factorization of $\mathrm{W}(\mathrm{z})$ of the form (1.3) implies that
(i) $\quad \mathrm{W}_{0}(\mathrm{z})$ has just one simple zero or $\mathrm{g}(\mathrm{z})$ is a linear polynomial, then $\mathrm{W}(\mathrm{z})$ is called prime in divisor sense.
(ii) $\mathrm{W}_{0}(\mathrm{z})$ has only a finite number of zeros or $\mathrm{g}(\mathrm{z})$ is a polynomial, then $\mathrm{W}(\mathrm{z})$ is called pseudoprime in divisor sense.
(iii) $\mathrm{g}(\mathrm{z})$ is a linear polynomial whenever $\mathrm{W}_{0}(\mathrm{z})$ has infinite number of zeros, then $\mathrm{W}(\mathrm{z})$ is called right prime in divisor sense.
(iv) $\mathrm{W}_{0}(\mathrm{z})$ has just one simple zero whenever $\mathrm{g}(\mathrm{z})$ is transcendental, then $\mathrm{W}(\mathrm{z})$ is called left-prime in divisor sense.

MAIN RESULTS

In this section we prove the main results of the paper.

J. L. Sharma

Theorem 2.1: Let $W(z)$ be a k-valued algebroidal function. Then z_{0} is a zero of $W(z)$ of order n if and only if $W\left(z_{0}\right)=W^{\prime}\left(z_{0}\right)=\cdots=W^{(n-1)}\left(z_{0}\right)=0$ and $W^{(n)}\left(z_{0}\right) \neq 0$.
Proof: First suppose z_{0} is a zero of W of order n. Then there exists a positive integer m such that $\left[\left|\frac{\mathrm{m}}{\mathrm{k}}\right|\right]=\mathrm{n}$ and $\mathrm{W}(\mathrm{z})=\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\frac{\mathrm{m}}{\mathrm{k}}} \mathrm{W}_{0}(\mathrm{z})$, where $\mathrm{W}_{0}\left(\mathrm{z}_{0}\right) \neq 0$.

Case (i): Let $\mathrm{q}=\frac{\mathrm{m}}{\mathrm{k}}$ be a non-integer. Then

$$
\begin{aligned}
\mathrm{W}^{\prime}(\mathrm{z}) & =q\left(\mathrm{z}-\mathrm{z}_{0}\right)^{q-1} \mathrm{~W}_{0}(\mathrm{z})+\left(\mathrm{z}-\mathrm{z}_{0}\right)^{q} \quad \mathrm{~W}_{0}^{\prime}(\mathrm{z}) \\
& =\left(\mathrm{z}-\mathrm{z}_{0}\right)^{q-1}\left[q \mathrm{~W}_{0}(\mathrm{z})+\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{W}_{0}^{\prime}(\mathrm{z})\right] \\
& =\left(\mathrm{z}-\mathrm{z}_{0}\right)^{q-1} \square_{\square}(\mathrm{z}),
\end{aligned}
$$

where $\square_{1}\left(\mathrm{z}_{0}\right) \neq 0$. Thus, $\mathrm{W}^{\prime}\left(\mathrm{z}_{0}\right)=0$
Continuing, we get $\mathrm{W}\left([\mathrm{qq]})(\mathrm{z})=\left(\mathrm{z}-\mathrm{z}_{0}\right)\right)^{q-[q]} \square_{[\mathrm{q}]}(\mathrm{z})([\mathrm{x}]$ denotes greatest integer $\leq \mathrm{x})$,
where $\square_{[q]}\left(\mathrm{z}_{0}\right) \neq 0$ and hence $\mathrm{W}^{([q])}\left(\mathrm{z}_{0}\right)=0$, whereas $\mathrm{W}^{([\mathrm{qq]}+1)}(\mathrm{z})=\frac{1}{\left(\mathrm{z}-\mathrm{z}_{0}\right)^{[\mathrm{q}]+1-\mathrm{q}}} \phi_{[\mathrm{q}]+1}(\mathrm{z})$
and so $W^{([q]+1)}\left(\mathrm{Z}_{0}\right) \neq 0$.
Thus, $\mathrm{W}\left(\mathrm{z}_{0}\right)=\mathrm{W}^{\prime}\left(\mathrm{z}_{0}\right)=\cdots=\mathrm{W}^{([q])}\left(\mathrm{z}_{0}\right)=0$ and $\mathrm{W}^{([q]+1)}\left(\mathrm{z}_{0}\right) \neq 0$.
So, $\mathrm{W}\left(\mathrm{z}_{0}\right)=\mathrm{W}^{\prime}\left(\mathrm{z}_{0}\right)=\mathrm{W}^{([|\mathrm{q}|]-1)}\left(\mathrm{z}_{0}\right)=0$ and $\mathrm{W}^{[|\mathrm{q}|]}\left(\mathrm{z}_{0}\right) \neq 0$.
Hence, $\mathrm{W}\left(\mathrm{z}_{0}\right)=\mathrm{W}^{\prime}\left(\mathrm{z}_{0}\right)=\cdots=\mathrm{W}^{(\mathrm{n}-1)}\left(\mathrm{z}_{0}\right)=0$ and $\mathrm{W}^{(\mathrm{n})}\left(\mathrm{z}_{0}\right) \neq 0$.
Case (ii): Let $q=\frac{m}{k}$ be an integer. Then, since $q=[q]=[|q|]$, we easily conclude that
$\mathrm{W}\left(\mathrm{z}_{0}\right)=\mathrm{W}^{\prime}\left(\mathrm{z}_{0}\right)=\cdots=\mathrm{W}^{(\mathrm{q}-1)}\left(\mathrm{z}_{0}\right)=0$ and $\mathrm{W}^{(\mathrm{q})} \neq 0$
and so $\mathrm{W}\left(\mathrm{z}_{0}\right)=\mathrm{W}^{\prime}\left(\mathrm{z}_{0}\right)=\cdots=\mathrm{W}^{(\mathrm{n}-1)}\left(\mathrm{z}_{0}\right)=0$ and $\mathrm{W}^{(\mathrm{n})}\left(\mathrm{z}_{0}\right) \neq 0$.
Conversely, let $\mathrm{W}\left(\mathrm{z}_{0}\right)=\mathrm{W}^{\prime}\left(\mathrm{z}_{0}\right)=\cdots=\mathrm{W}^{(\mathrm{n}-1)}\left(\mathrm{z}_{0}\right)=0$ and $\mathrm{W}^{(\mathrm{n})}\left(\mathrm{z}_{0}\right) \neq 0$.
Then clearly z_{0} is a zero of $\mathrm{W}(\mathrm{z})$, say of order l.
Thus there exists a positive integer t such that $\left[\left|\frac{\mathrm{t}}{\mathrm{k}}\right|\right]=l$ and $\mathrm{W}(\mathrm{z})=\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\frac{\mathrm{t}}{\mathrm{k}}} \mathrm{W}_{0}(\mathrm{z})$,
where $W_{0}\left(z_{0}\right) \neq 0$ and by first part
$\mathrm{W}\left(\mathrm{z}_{0}\right)=\mathrm{W}^{\prime}\left(\mathrm{z}_{0}\right)=\cdots=\mathrm{W}^{(l-1)}\left(\mathrm{z}_{0}\right)=0$ and $\mathrm{W}^{(l)}\left(\mathrm{z}_{0}\right) \neq 0$.
From (2.1) and (2.2), we have $l=n$
This completes the proof of Theorem 2.1.

Theorem 2.2: Let $W(z)$ be a k-valued entire algebroidal function having only finitely many zeros.
Then $W(z)=[P(z)]^{\frac{1}{k}} \quad e^{\square(z)}$, for some polynomial $P(z)$ and an entire function $\square(z)$.
Proof: Let $z_{1}, z_{2}, \ldots, z_{p}$ be the zeros of $W(z)$ of order $n_{1}, n_{2}, \ldots, n_{p}$, respectively. Then there exists positive integers $m_{1}, m_{2}, \ldots, m_{p}$ such that $n_{i}=\left[\left|\frac{m_{i}}{k}\right|\right], i=1,2, . ., p$ and

ON FACTORIZATION OF ENTIRE ALGEBROIDAL FUNCTIONS

$$
\mathrm{W}(\mathrm{z})=\left(\mathrm{z}-\mathrm{z}_{1}\right)^{\frac{\mathrm{m}_{1}}{k}}\left(\mathrm{z}-\mathrm{z}_{2}\right)^{\frac{\mathrm{m}_{2}}{k}} \cdots\left(\mathrm{z}-\mathrm{z}_{\mathrm{p}}\right)^{\frac{\mathrm{m}_{\mathrm{p}}}{k}} \square(\mathrm{z}),
$$

where $\square(\mathrm{z})$ is an entire function having no zeros. Thus,

$$
\begin{align*}
& \mathrm{W}(\mathrm{z})=\left[\left(\mathbf{z}-\mathbf{z}_{1}\right)^{\mathrm{m}_{1}}\left(\mathbf{z}-\mathbf{z}_{\mathbf{2}}\right)^{\mathrm{m}_{2}} \ldots\left(\mathbf{z}-\mathbf{z}_{\mathbf{p}}\right)^{\mathrm{m}_{\mathrm{p}}}\right]^{\frac{1}{k}} \tag{z}\\
& =[\mathrm{P}(\mathrm{z})]^{\frac{1}{\mathrm{k}}} \square(\mathrm{z}),
\end{align*}
$$

where $\mathrm{P}(\mathrm{z})=\left(\mathrm{z}-\mathrm{z}_{1}\right)^{\mathrm{m}_{1}}\left(\mathrm{z}-\mathrm{z}_{2}\right)^{\mathrm{m}_{2}} \cdots\left(\mathrm{z}-\mathrm{z}_{\mathrm{p}}\right)^{\mathrm{m}_{\mathrm{p}}}$ is a polynomial. Since $\square(\mathrm{z})$ is an entire function having no-zeros, so $\square(\mathrm{z})=\mathrm{e}^{\square(\mathrm{z})}$, where $\square(\mathrm{z})$ is an entire function. This completes the proof of Theorem 2.2.

Remark 2.1: Let $\mathrm{W}(\mathrm{z})$ be an entire algebroidal function of finite order. If $\mathrm{W}(\mathrm{z})$ has finite number of zeros, then $W^{\prime}(z)$ has also finite number of zeros. This follows from Theorem 2.2. In this case $\square(z)$ is a polynomial. But if $W(z)$ is an entire algebroidal function of infinite order, then the above statement is not true. For, consider

$$
W(z)=z^{\frac{3}{2}} e^{e^{z}}
$$

Then $W(z)$ is an entire algebroidal function of infinite order having finite number of zeros but $W^{\prime}(z)$ has infinite number of zeros.

Theorem 2.3: Let $\square(\mathrm{z})$ be an entire function and let p and k be positive integers such that $\mathrm{p}<\mathrm{k}$. Then $W(z)=z^{\frac{p}{k}} e^{\square(z)}$ is prime in divisor sense.

Proof: Let

$$
\mathrm{W}(\mathrm{z})=\mathrm{W}_{0}(\mathrm{~g}(\mathrm{z})) \mathrm{e}^{\square(\mathrm{z})},
$$

where $W_{0}(z)$ is k_{0}-valued entire algebroidal function, $\mathrm{k}_{0} \leq \mathrm{k}$, $\mathrm{g}(\mathrm{z})$ (\equiv constant) and $\square(\mathrm{z})$ are entire. Then $W_{0}(g(z))$ has just one zero. Thus, there exists z_{0} such that $W_{0}\left(g\left(z_{0}\right)\right)=0$ and $W_{0}\left(z_{1}\right)=0$ for unique $\mathrm{z}_{1}=\mathrm{g}\left(\mathrm{z}_{0}\right)$. Therefore, z_{1} is a zero of W_{0}.

Case (i): Suppose $g(z)$ is transcendental. Let $z_{2}\left(\neq z_{1}\right)$ be a zero of W_{0}. Then $g(z)=z_{i}$. for some fixed i $=1,2$, has infinity of solutions say $\left\{w_{j}\right\}_{j=1}^{\infty}$. Thus, $W_{0}(g(z))$ has infinity of zeros, a contradiction.
Suppose Z_{1} is a zero of order $n(\geq 2)$ of W_{0}.
Then there exists a positive integer m such that $n=\left[\left|\frac{\mathrm{m}}{\mathrm{k}_{0}}\right|\right]$ and $\mathrm{W}(\mathrm{z})=\left(\mathrm{z}-\mathrm{z}_{1}\right)^{\frac{\mathrm{m}}{\mathrm{k}_{0}}} \square(\mathrm{z})$,
where $\square(\mathrm{z})$ has no-zeros. Thus,

$$
\begin{aligned}
\mathrm{W}_{0}(\mathrm{~g}(\mathrm{z})) & =\left(\mathrm{g}(\mathrm{z})-\mathrm{z}_{1}\right)^{\frac{\mathrm{m}}{\mathrm{k}_{0}}} \square(\mathrm{~g}(\mathrm{z})) \\
& =\left(\mathrm{g}(\mathrm{z})-\mathrm{z}_{1}\right)^{\frac{\mathrm{m}}{\mathrm{k}_{0}}} \psi(\mathrm{z}),
\end{aligned}
$$

where $\square(\mathrm{z})$ has no-zeros.
Subcase(i): When $g(z)=Z_{1}$ has no solution. Then $W_{0}(g(z))$ has no-zeros, a contradiction.
Subcase(ii): When $\mathrm{g}(\mathrm{z})=\mathrm{Z}_{1}$ has a solution. Then $\mathrm{W}_{0}(\mathrm{~g}(\mathrm{z}))$ has a zero of order $\mathrm{n} \geq 2$, again a contradiction. Thus, if g is transcendental, then W_{0} has just one simple zero.

J. L. Sharma

Case (ii): Suppose $g(z)$ is a polynomial of degree ≥ 2. Then $g(z)-Z_{1}$ has at least two zeros.
Subcase (i): Suppose $g(z)-Z_{1}$ has two distinct zeros, say, \square_{1} and \square_{2}. Then $g\left(\square_{1}\right)=Z_{1}$ and $g\left(\square_{2}\right)=Z_{1}$, so $W_{0}\left(g\left(\square_{1}\right)\right)=0$ and $W_{0}\left(g\left(\square_{2}\right)\right)=0$.
Thus, $W_{0}(g(z))$ has two distinct zeros, a contradiction.
Subcase (ii): Suppose $g(z)-Z_{1}$ has a zero of order $n(\geq 2)$ at \square_{1}, say. Then $W_{0}\left(g\left(\square_{1}\right)\right)=0$ and $\left[W_{0}(g)\right]^{\prime}$
$\left(\square_{1}\right)=W_{0}^{\prime}\left(g\left(\square_{1}\right)\right) \mathrm{g}^{\prime}\left(\square_{1}\right)$

$$
=0
$$

Thus, $\mathrm{W}_{0}(\mathrm{~g}(\mathrm{z}))$ has a zero of order $\mathrm{n} \geq 2$, again a contradiction. Hence case (ii) is not possible.

Case (iii): Suppose g is linear polynomial. In this case there is nothing to prove.
Hence $W(z)$ is prime in divisor sense.
Remark 2.2: If $p>k$, then the above theorem may not be true. For, consider $W(z)=z^{\frac{p}{k}}$.
Let $W_{0}(z)=z^{\frac{p}{k}}$ and $g(z)=z e^{B(z)}$, where $B(z)$ is non-constant entire function.
Then $W_{0}(g(z)) e^{-\frac{p}{k}} B(z)=W_{0}\left(z e^{B(z)}\right) e^{-\frac{p}{k}}{ }_{B(z)}$

$$
\begin{aligned}
& =\left(z e^{B(z)}\right)^{\frac{p}{k}} e^{-\frac{p}{k}} B(z) \\
& =W(z)
\end{aligned}
$$

Thus, $W(z)$ is not prime in divisor sense.

Remark 2.3: An algebroidal function which is prime may not be prime in divisor sense.
p
For, consider $W(z)=z^{n}$, where p is prime $>n$. Then $W(z)$ satisfies $W^{n}-z^{p}=0$ and by Definition 1.4, $W(z)$ is prime. Clearly $W(z)$ is not prime in divisor sense in view of
Remark 2.2.

Remark 2.4: An algebroidal function which is prime in divisor sense may not be prime.
For, consider $W(z)={ }_{-} z^{\frac{1}{2}} e^{z\left(e^{z}+\frac{1}{2}\right)}$. Then by Theorem $2.2, W(z)$ is prime in divisor sense. But $W(z)$ is not prime. For, let

$$
\begin{aligned}
& \mathrm{W}_{0}(\mathrm{z})=\mathrm{z}^{\frac{1}{2}} \mathrm{e}^{\mathrm{z}} \text { and } \mathrm{g}(\mathrm{z})=\mathrm{z} \mathrm{e} \text { e } . \text { Then } \\
& \begin{aligned}
& \mathrm{W}_{0}(\mathrm{~g}(\mathrm{z}))=\mathrm{W}_{0}(\mathrm{z} \mathrm{e} \\
&\mathrm{z}) \\
&=\mathrm{W}(\mathrm{z})
\end{aligned}
\end{aligned}
$$

REFERENCES

1. Zheng, J.H. : The growth and factorization of composition of algebroidal functions, Natural Magazine, 12:11, 1989, pp. 876.
2. Zheng, J.H. and Yang, C.C. : Facotrization of algebroidal functions, Chinese Journal of Contemporary Mathematics Vol. 13, No.4(1992), 333-340.
3. Urabe, H: Primeness in divisor sense of certain entire functions. J. Math. Kyoto Univ. 25(1), 1984, 127-140.
4. Urabe H: On pseudo-primeness in divisor sense for entire functions and its application to the factorization of meromorphic functions. Bull. Kyoto. Univ. of Education Ser. B. 81(1992), 1-16.
5. Singh A.P. and Sharma, J.L: Some criteria for determining pseudo-primeness in divisor sense of entire functions. Proc. Nat. Acad. Sci. India, 68(A) IV, 1998, 365-372
6. Singh, A.P. and Sharma, J.L.: On factorization of meromorphic functions. Bull. Allahabad Math Soc. Vol. 15, 2000, 9-15.
