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Abstract. In this paper, we have considered a biological economic model
based on prey-predator dynamics where prey and predator species continu-
ously harvested and predation is considered with Holling type -II functional
response. The dynamic behavior of the proposed biological economic prey
predator model is discussed. We assumed that both prey and predator species
follows logistic growth. The local and global stability analysis has been spec-
ified using Routh -Hurwitz criteria and by constructing Lyapunov function
respectively. Biological and Bionomical equilibriums of the system are de-
rived. Mathematical formulation of the optimal harvesting policy is given
and its solution is derived in the equilibrium case by using Pontryagin’s max-
imum principle.spatiotemporal changing aspects of the proposed model are
also studied. It is also provided the computer simulations for verifying the
results.

1. Introduction

Biomathematics is an interdisciplinary subject with a vast and exponentially
growing literature pertaining to different disciplines. A large number of mathemat-
ical models have been developed to get an insight into complex biological, ecolog-
ical and physiological situations. A variety of Mathematical techniques have been
employed to solve these models. These include techniques for the solution of dif-
ferential, difference, integral delay differential and integro differential equations as
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well as useful techniques of linear, non-linear, dynamic, stochastic programming,
calculus of variations, maximum principle and so on. Some of the latest results
of algebraic topology, fuzzy sets and catastrophe theory have been successfully
employed to probe deeply into the problems of life sciences. Most of the biological
systems are essentially based on systems of Non-linear ordinary differential equa-
tions. Both mathematical modeling and simulation are very important in recent
studies of mathematical Biology. The development of commonly used resources
like forestry, fishery, and wildlife is linked with the applications of mathematical
biology. Now a day’s many authors are emphasizing on the interaction between
biology and mathematics. The prey-predator system is an important population
model and has been studied by many authors [26, 38, 44, 45]. It is assumed
in the classical predator-prey model that each individual predator possesses the
same ability to attack prey In recent years, the optimal management of renewable
resources, which has a direct relationship to sustainable development, has been
studied extensively by K.S.Chaudhuri [5], T.K.Kar et.al[26] and W.Wang, L.Chen
[43], Clark [6]. At present people are facing the problems due to shortage of re-
sources. Extensive and unregulated harvesting of marine fishes can even lead to
the extinction of several fish species. This problem can be addressed by arrang-
ing marine reserved zones, where fishing and other activities are prohibited. This
marine reserve not only protects species inside the reserve area but also increase
fish abundance in adjacent areas. The model of ecological system reflecting these
problems has been given by T.K. Kar et.al [26] and Rui Zhang et.al [45]. Wendy-
Wang et.al [44], considered prey-predator model with a stage structure in which
predators are split in to immature predators and matured predators. They also
assumed that the matured predators catch the prey and provide food for the im-
mature predators. Rui Zhang et.al [45] considered a prey predator fishery model
with prey dispersed in two patch environment, one is free zone for fishing and
other is reserved zone where fishing is prohibited. A.K.Sarkar [37] considered a
mathematical model of an out breaks that links the trophic structure of primary
and secondary producer in the estuary. They also discussed about the results that
are qualitatively resemble with those observed in the estuary and thereby offers an
insight for the factors that sustain a bloom. In this paper our aim is to study the
existence of equilibriums, local, global stabilities of a biological economic prey-
predator model by assuming the growth of both prey and predator logistically.
We also derived the inequalities of bionomic equilibrium and the mathematical
formulation of optimal harvesting policy for the prey-predator model with Holling
type-II.

2. Mathematical formulation

We consider the following dynamical system as an ecological model of a prey-
predator Holling type-II interaction. This also includes the harvesting efforts for
both prey and predator species. The inclusion of logistic growth in prey and as
well as in predator is considered and the corresponding mathematical equations
are as follows.
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(2.1)
dx

dt
= rx

(
1− x

k

)
− axy

b+ x
− q1E1x

(2.2)
dy

dt
=

axy

b+ x
+ dy

(
1− x

k

)
− cy2 − q2E2y

where x(t) is the biomass density of the prey species and y(t) is the biomass
density of predator species at time t in any patchy aquatic environment with
the initial conditions r − q1E1 > 0, d − q2E2 > 0 where r represents intrinsic
growth rate of prey species, k represents carrying capacity of prey species, q1
represents catchability coefficient of prey species, E1 represents the effort applied to
harvest the prey species,the term dy represents the growth rate of predator species
due to the predation, c represents death rate of predator species, q2 represents
catchability coefficient of predator species, E2 represents the effort applied to
harvest the predator species. Throughout this analysis we assume that r−q1E1 > 0
and d− q2E2 > 0

3. Analysis of steady states

It is well known that the steady states of the system (2.1)-(2.2) are independent
of time. The possible steady states are G0(0, 0),G1(x̄, 0),G2(0, ȳ), G3(x∗, y∗). In
the non appearance of predator species, the possible steady state G1(x̄, 0) where

(3.1) x̄ =
k(r − q1E1)

r

In the non appearance of prey species, the suitable equilibrium point is G2(0, x̄),
where

(3.2) ȳ =
d− q2E2

c

Here both x̄ and ȳ are positive since r−q1E1 > 0 and d−q2E2 > 0. In the presence
of both prey and predator species, the steady state point (interior) is G3(x∗, y∗)
where

(3.3) y∗ =
(b+ x∗)(r − rx∗

k − q1E1)

a

For y∗ to be positive, we must have r − q1E1 >
rx∗

k . For x∗ to be positive, it is
required to form a cubic equation from (2.1)-(2.2) by equating the corresponding
sides to zero.

(3.4) a1x
∗3 + b1x

∗2 + c1x
∗ + d1 = 0

where a1 = cr
ka > 0, b1 = 2cbr

ka −
d
k −

cr
a + cq1E1

a , c1 = a + d − 2cbr
a + 2cbq1E1 −

q2E2 + cb2r
ka −

db
k , d1 = bd− cb2r

a + cb2q1E1

a − bq2E2.
Equation(3.4) has a unique positive solution if the following inequalities hold
(i) 2cbr

ka + cq1E1

a < d
k + cr

a , (ii) a+ d+ 2cbq1E1 + cb2r
ka < 2cbr

a + q2E2 + db
k ,

(iii) d+ cbq1E1

a < cbr
a + q2E2.
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4. Local stability analysis

It is nothing but the steadiness of the given ecological system. Since the equilib-
rium points G0(0, 0),G1(x̄, 0),G2(0, ȳ) are unstable, the present study is restricted
to the inner steady state. Now, we analyze the steadiness, in specific local one.
To checked the local steadiness, it is mandatory to custom the typical equation of
variational matrix for the system (2.1)-(2.2) around G3(x∗, y∗) is

(4.1) λ2 +A1λ+A2 = 0

where A1 = cy∗+ rx∗

k −
ax∗y∗

(b+x∗)2 −
dx∗

k ; A2 = rcx∗y∗

k − acx∗(y∗)2

(b+x∗)2 −
a2bx∗y∗

(b+x∗)3 + adx∗y∗

k(b+x∗)−
rdx∗y∗

k2 + ad(x∗)2y∗

k(b+x∗)2 .
Now the stability of the system (2.1)-(2.2) purely depends on the signs of eigenval-
ues (roots λ1,λ2 of the equation (4.1)),and therefore G3(x∗, y∗) is locally asymp-
totically stable if λ1 + λ2 < 0 and λ1λ2 > 0 provided r > d, c > ax∗

(b+x∗)2 .

5. Study of Global stability

Theorem(I). The Steady state G3(x∗, y∗) is globally asymptotically stable.
Proof: Let us consider the Lyapunov function v(x, y) =

[
x− x∗ − x∗ ln

(
x
x∗

)]
+

l1

[
y − y∗ − y∗ ln

(
y
y∗

)]
.

dv

dt
=

(
x− x∗

x

)
dx

dt
+ l1

(
y − y∗

y

)
dy

dt

= (x− x∗)
[
r − rx

k
− ay

b+ x
− q1E1

]
+ l1(y − y∗)

[
ax

b+ x
+ d

(
1− x

k

)
− cy − q2E2

]
= (x− x∗)

[
−r
k

(x− x∗)− a
(

y

b+ x
− y∗

b+ x∗

)]
+ l1(y − y∗)

[
a

(
x

b+ x
− x∗

b+ x∗

)
− d

k
(x− x∗)− c(y − y∗)

]
.

Choose, l1 = b+x∗

b

dv

dt
=
−r
k

(x− x∗)2 − ay∗(x− x∗)2

(b+ x)(b+ x∗)
− d(b+ x∗)(x− x∗)(y − y∗)

kb
− c(b+ x∗)(y − y∗)2

b

≤ −
[
r

k
+

ay∗

(b+ x)(b+ x∗)

]
(x− x∗)2 +

[
d(b+ x∗)

2kb

]
(x− x∗)2

+

[
d(b+ x∗)

2kb

]
(y − y∗)2 −

[
c(b+ x∗)

b

]
(y − y∗)2

So,dvdt < −
[
r
k + ay∗

(b+x)(b+x∗) + d(b+x∗)
2kb

]
(x − x∗)2 +

[
d(b+x∗)

2kb − c(b+x∗)
b

]
(y − y∗)2.

Thus we conclude that dv
dt < 0 provided the coefficients of (x− x∗)2 and (y− y∗)2

are negative. Hence the system is globally asymptotically stable if the conditions
(i)
[
r
k + ay∗

(b+x)(b+x∗)

]
> d(b+x∗)

2kb and (ii) d2c < k hold.
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6. Analysis of bionomic equilibria

It is the study of the dynamics of living resources using economic models. Let
c1 be the fishing cost per unit effort for prey species, c2 be the fishing cost per unit
effort for predator species, p1 be the price per unit biomass of the prey, p2 be the
price per unit biomass of the predator. Therefore net revenue or economic rent at
any time given by R = R1+R2 where R1 = (p1q1x− c1)E1, R2 = (p2q2y − c2)E2,
where R1 represents Net Revenue for the prey and R2 represents Net revenue for
predator species. The bionomic equilibrium (x∞, y∞, (E1)∞, (E2)∞) is given by
the following equations

rx
(

1− x

k

)
− axy

b+ x
− q1E1x = 0,(6.1)

axy

b+ x
+ dy

(
1− x

k

)
− cy2 − q2E2y = 0(6.2)

R = (p1q1x− c1)E1 + p2q2y − c2)E2 = 0(6.3)

In order to determine the bionomic equilibrium we now consider the following
cases.
Case(I): If c2 > p2q2y i.e., the cost is greater than the revenue for the predator,
then the predator fishing will be stopped(E2 = 0).Only the prey fishing remains
operational(c1 < p1q1x) we then have x∞ = c1

p1q1
.

Case(II): If c1 > p1q1x i.e., the cost is greater than the revenue in the prey fish-
ing,then the prey fishing will be closed (E1 = 0).Only the predator fishing remains
operational(c2 < p2q2y), then we have y∞ = c2

p2q2
.

Case(III): If c1 > p1q1x and c2 > p2q2y i.e., the cost is greater than the revenues
for the both the species then the whole fishery will be closed.
Case(IV): If c1 < p1q1x and c2 < p2q2y i.e., the revenues for the both the species
being positive.Then the whole fishery is in operation. In this case x∞ = c1

p1q1
and

y∞ = c2
p2q2

.
Using x∞, y∞ and from (6.1),(6.2),we get

(6.4) (E1)∞ =
1

q1

r − rc1
kp1q1

− ac2

p2q2

(
b+ c1

p1q1

)


(6.5) (E2)∞ =
1

q2

[
ac1

p1q1b+ c1
+ d− dc1

p1q1k
− cc2
p2q2

]
.

For (E1)∞ and (E2)∞ are to be positive, provided

(6.6) r

(
1− M

k

)
>

aN

b+M

and

(6.7) d

(
1− M

k

)
> cN − aM

b+M

where M = c1
p1q1

, N = c2
p2q2

. Thus the Non-trivial bionomic equilibrium point
(x∞, y∞, (E1)∞, (E2)∞) exists if the conditions (6.6) and (6.7) hold.
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7. Optimal harvesting strategy

Here the objective is to maximize the present value J of a continuous time
stream of revenues given by

(7.1) J =

∫ ∞
0

e−δt [(p1q1x− c1)E1 + (p2q2y − c2)E2] dt

where δ denotes the instantaneous annual rate of discount. Now our problem is
to maximize J subject to the state equations (2.1) and (2.2) by invoking Pontrya-
gin’s maximum principle.The control variable Ei(i = 1, 2) are subjected to the
constraints

(7.2) 0 ≤ Ei ≤ (Ei)max

The Hamiltonian for the problem is given by

H = e−δt [(p1q1x− c1)E1 + (p2q2y − c2)E2] + λ1

[
rx
(

1− x

k

)
− axy

b+ x
− q1E1x

]
+ λ2

[
axy

b+ x
+ dy

(
1− x

k

)
− cy2 − q2E2y

]
(7.3)

where λ1 and λ2 are the adjoint variables.The control variables E1and E2 appear
linearly in the Hamiltonian function H. Let the control constraints are not binding
i.e. the optimal solution does not occur at (Ei)max, we have singular control.
According to Pontryagin’s maximum principle,

(7.4)
∂H

∂E1
= 0,

∂H

∂E2
= 0,

dλ1
dt

= −∂H
∂x

,
dλ2
dt

= −∂H
∂y

.

Now,from ∂H
∂E1

= 0 and ∂H
∂E2

= 0 the values of λ1, λ2 are

(7.5) λ1 = e−δt
[
p1 −

c1
q1x

]

(7.6) λ2 = e−δt
[
p2 −

c2
q2y

]
Again, from dλ1

dt = −∂H∂x and dλ2

dt = −∂H∂y , we have
(7.7)
dλ1
dt

= −
[
e−δtp1q1E1 + λ1

[
r − 2rx

k
− aby

(b+ x)2
− q1E1

]
+ λ2

[
aby

(b+ x)2
− dy

k

]]

(7.8)
dλ2
dt

= −
[
e−δtp2q2E2 + λ1

(
− ax

b+ x

)
+ λ2

(
ax

b+ x
+ d− 2cy − q2E2

)]
From (7.5) and (7.8), we get a linear equation which is in the form of dλ2

dt +λ2A1 =

e−δtA2, and whose solution is given by

(7.9) λ2 = e−δt
[

A2

A1 − δ

]
,
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where A1 = ax
b+x + d− 2cy− q2E2, A2 =

(
x− c1

p1q1

)
ax
b+x − p2q2E2. From (7.6) and

(7.7) we get a linear differential equation which is in the form of dλ1

dt + λ1B1 =

e−δtB2 and whose solution is given by

(7.10) λ1 = e−δt
[

B2

B1 − δ

]
,

where

B1 = r−2rx

k
− aby

(b+ x)2
−q1E1, B2 =

[
−p1q1E1 −

(
p2 −

c2
q2y

)(
aby

(b+ x)2
− dy

k

)]
.

From (7.9) and (7.10) we observe that the shadow price λi(t)eδt, i = 1, 2 remain
constant over time in optimal equilibrium when they remain bounded as t→∞.

8. Diffusion analysis

In this section, the spatial heterogeneity system with harvesting and diffusion
is proposed and investigated. The proposed mathematical model is given by

(8.1)
∂x

∂t
= rx

(
1− x

k

)
− axy

b+ x
− q1E1x+D1xuu

(8.2)
∂y

∂t
=

axy

b+ x
+ dy

(
1− x

k

)
− cy2 − q2E2y +D2yuu

In this segment, we deliberated the exceptional influences of transmission of the
ideal structure (8.1)-(8.2). Let x = x (u, t) , y = y (u, t), where u is a space vari-
able and x(u, 0) > 0; y(u, 0) > 0; for u ∈ [0,L] . The trivial fluctuation edge
conditions are specified by [xu]u=0,L = 0; [yu]u=0,L = 0. Now, let us consider the
ideal (8.1)-(8.2) underneath trivial fluctuations edge ailments. To analyze the role
of transmission on this model, we deliberate the linear model of the structure
(8.1)-(8.2) about the interior steady state G3(x∗, y∗) as given by

(8.3) X ′(t) = −rx
∗X

k
+D1Xuu

(8.4) Y ′(t) = −dy
∗X

k
− cy∗Y +D2Yuu

by putting x = x∗+X; y = y∗+Y ;. Assume the solutions of equations (8.3)-(8.4)
are in the form

(8.5) X = α1e
λt cos pu;Y = α2e

λt cos pu

where p is the wave numeral of perturbation, λ is the frequency numeral & αi, i =
1, 2 are the amplitudes. The characteristic equation of (8.3)-(8.4) using (8.5) is

(8.6) µ2 +Aµ+B = 0

where A = rx∗

k + cy∗ + (D1 +D2)p2 ; B = rcx∗y∗

k + p2( rx
∗D2

k + cy∗D1) +D1D2p
4

Now, our main aim is to find the ailments for diffusive unsteadiness of model
system (8.1)-(8.2), for this, let us rewrite B as φ(p2) where
φ(p2) = D1D2(p2)2 + p2( rx

∗D2

k + cy∗D1) + rcx∗y∗

k .
The system (8.1)-(8.2) is unstable if one of the above roots of the equation (8.6)
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Table 1. The hypothetical set of parameter values.

Parameters values
r 2.5
k 10
a 0.25
b 1.2
q1 .3
d 2
c 0.15
q2 0.21
E1 0.14
E2 0.16

is optimistic. A necessary and sufficient condition for a root to be positive is that
rx∗

k + cy∗ + (D1 + D2)p2 > 0. The sufficient condition for positivity of one of
the roots of the equation (8.6) is φ(p2) < 0. Since φ(p2) is an expression in
p2 where p the wave number, non zero positive quantity, the minimum of φ(p2)
occurs. Let (p2)min be the corresponding value of p2 for minimum value of φ(p2),

then (p2)min = −
rx∗D2

k +cy∗D1

D1D2
> 0. The corresponding minimum value of φ(p2) is

φ(p2)min =
rx∗D2

k +cy∗D1

4D1D2
< rcx∗y∗

k , provided Γ > rx∗

kcy∗ where Γ = D1

D2

9. Numerical simulations

With the parameter values given in the table 1, we established the analytical
findings through numerical simulations using MATLAB. It is also observed that In-
crease in predation rate (a = 0.75) cause extinction of the prey population.Further
change in the growth rate of prey species the system shows shift in the equilibrium
point where one of the coexistence steady state collide with an axial equilibrium
point.
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Figure 1. represents the variation of species against time’t’



9

8.8 9 9.2 9.4 9.6 9.8 10

prey

2

4

6

8

10

12

14

16

18

20

pr
ed

at
or

Figure 2. represents the phase portrait diagram of species prey
and predator.
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Figure 3. represents the variation of species against time’t’ with
a = 0.75
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Figure 4. represents the phase portrait diagram of species prey
and predator with a = 0.75.

0
8

5

10

6 15

P
re

y 
D

en
si

ty

15

Space s

20

4 10

Time t

25

2 5

0 0

Figure 5. denotes the steady fluctuations of the prey species
against space and time with D1 = 0.1, D2 = 0.2.
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Figure 6. denotes the steady fluctuations of the predator species
against space and time with D1 = 0.1, D2 = 0.2
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Figure 7. denotes the steady fluctuations of the prey species
against space and time with D1 = 0.001, D2 = 0.002.
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Figure 8. denotes the steady fluctuations of the predator species
against space and time with D1 = 0.001, D2 = 0.002
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Figure 9. denotes the steady fluctuations of the prey species
against space and time with D1 = 10, D2 = 20.
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Figure 10. denotes the steady fluctuations of the predator
species against space and time with D1 = 10, D2 = 20

10. Concluding remarks

This research article mainly concentrates and aims at the most interesting
changing aspects of a prey, predator trophic interaction model with harvesting
with Holling type-II functional response. We obtain the possible equilibrium points
and analyzed. Stability in terms of local and global is checked in view of R-H Cri-
teria and suitable construction of Lyapunov function. Bio-economic and feasible
harvesting strategies have been computed using maximum principle. It is shown
that the dynamics of deterministic system in the figures (1)-(2). we also verified
the steadiness of the system (2.1)-(2.2) in the figures (3)-(4) by increasing the
predation rate. Also analysed instability condition for diffusive structure of the
ideal structure (8.1)-(8.2). It is also verified the stable oscillations of the prey and
predator populations against time and space in figures (5)-(10).
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