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ABSTRACT :  A simple finitely generated locally (-1,1) ring must be an associative field. 
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INTRODUCTION : Hentzel and smith [1] studied simple locally (-1,1) nil rings and showed that a simple locally 

(-1,1) nil ring of char. ≠ 2,3 must be associative. Hentzel [1] studied properties of nil potent ideals in semi simple (-

1,1) rings which are nil. We concentrate mainly on the result of Hentzel [1] and prove that a simple finitely 

generated locally (-1,1) ring must be an associative field.  

A ring is a (-1,1) ring if it is satisfies the conditions: 

 0 ≡ A(x,y,z) = (x,y,z) + (y,z,x) + (z,x,y).     …  (1) 

 0 ≡ B(x,y,z) = (x,y,z) + (x,z,y).      …  (2) 

A ring is locally (-1,1) if the subring generated by any two of its elements is (-1,1). For example, both (-1,1) rings 

and alternative rings are locally (-1,1). In a nonassociative ring R, we define (x,y,z) = (xy)z – x(yz) and [x,y] = xy – yx 

for all x,y ∈ R. A ring R is said to be simple if whenever A is an ideal of R then either A = R or A = 0. By the center Z 

of R we mean that the set of all elements z in N such that [z,R] = 0 i.e., Z = {z ∈ N / [z,R] = 0}. That is C represents 

set of all elements which commutes with all elements in the ring and c will always means and elements taken from 

C. We use the following identities which hold in locally (-1,1) ring char. ≠ 2,3, which were proved by Hentzel [1]. 

Whereas the commutative center C is defined as C = {c ∈ R / [c,R] = 0}. 

0 ≡ C(x,y,z) = (x,y,yz) – (x,y,z)y.      …  (3) 

 

0 ≡ D(x,y,z,w) = (x,yz,w) + (x,wz,y) – (x,z,w)y – (x,z,y)w.   …  (4) 
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0 ≡ E(x,y,z) = (x,y2,z) – (x,y,yz + zy).      …  (5) 

0 ≡ F(x,y,y′,z) = (x,yy′ + y′y,z) – (x,y,y′z + z y′) – (x,y′,yz + zy).  …  (6) 

0 ≡ G(x,y,z) = [x,yz] + [y,zx] + [z,xy].      …  (7) 

0 ≡ H(x,y,z) = [x,[y,z]] + [y,[z,x]] + [z,[x,y]].     …  (8) 

0 ≡ I(x,y,z,w) = (xy,z,w) – (x,yz,w) + (x,y,zw) – x(y,z,w) – (x,y,z)w.  …  (9) 

0 ≡ J(x,y,z) = [x,(y,z,x)] + [x,(z,y,x)].      …  (10) 

0 ≡ K(x,y,z) = [x,(y,y,z)] + [z,(y,y,x)].      …  (11) 

0 ≡ L(x,y,z) = [x,(y,y,z)] – 3[y,(x,z,y)].      …  (12) 

0 ≡ M(x,y,z) = [xy,z] – x[y,z] – [x,z]y – 2(x,y,z) – (z,x,y).   …  (13) 

0 ≡ N(x,y,z,w) = (xy,z,w) + (x,y,[z,w]) – x(y,z,w) + (x,z,w)y.   …  (14) 

0 ≡ O(x,y,z,w) = ([x,y],z,w) – ([z,w],x,y) – [x,(y,z,w)] + [y,(x,z,w)].  …  (15) 

0 ≡ P(x,y,z,w) = [x,(y,z,w)] – [y,(z,w,x)] + [z,(w,x,y)] – [w,(x,y,z)].  …  (16) 

0 ≡ Q(x,y,c) = (x,y,c) + (y,x,c).      …   (17) 

0 ≡ R(c,x,y) = (c,x,y) – 2(y,x,c).      …  (18) 

0 ≡ S(x,y,c) = 3(x,y,c) – [x,y]c + [x,yc].     …  (19) 

            If S is a subset of a locally (-1,1) ring R, by S c  we mean {x / 2i3i x ∈ S for some 0 ≤ i,j}. It is easily shown S 
c ∙ T c  (ST) c and (S c) c = S c. We call a set S fat if S c = S. 

  

We need the following theorem proved by kleinfeld. 

THEOREM 1: In any (-1,1) ring (x,y,(x,x,y)) = (y,x,(x,x,y)) = ((x,x,y),x,y) = (x,x,y)[x,y] = 0. 

PROOF : The proof of the theorem can be found in [4, Lemmas 1,2]. 

 

LEMMA 1: A {x \ 3ix ∈ additive subgroup generated by the set of all (y,y,r) for all y,r ∈ R}. 

PROOF : Let M = {x \ 3ix ∈ additive subgroup generated by the set of all (y,y,r) for all y,r ∈ R}. (R,R,R)   M by 

[1, Lemma 2]. To show M is an ideal, by 0 ≡ I it is only necessary to show x(y,y,r) ∈ M for all x,y,r. This follows 

from N(x,y,y,r) – C(x,y,r).  ♦ 

 

 

          If R is a locally (-1,1) ring and k ∈ R, define Ta : R → R by rTk = rk (right multiplication by k). Tk is an 

element of the associative ring of all endomorphism on the abelian group (R,+). Let TR = the subring of 

endomorphism on (R,+) generated by {Tk\k ∈ R}. Let I = (R,R,R) c. I is an ideal of R and I {(x,x,R)\ x ∈ R}c 

Lemma 1. Let T1= the ideal of TR generated by {Tk\ k ∈ I}. We shall now derive the following identities. 

THEOREM 2: Let R be a finitely generated locally (-1,1) ring, then Ti is a nilpotent ideal of TR.  

 [R,R] C.      …  (20)  

 (C,C,R) = (C,R,C) = (R,C,C) = 0.       …  (21) 
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 (x,x,C) = 0.          …  (22) 

 (x,y,c)c′ = (x,c′y,c).         …  (23) 

 C is a commutative associative subring of R.     …  (24) 

(vi) (x,x,y)c = (x,x,cy).         …  (25) 

PROOF : We prove equation (20) from equation (8). 

0 = [[R,R],R] + [[R,R],R] + [R,R],R]  

0 = [[R,R],R] by char ≠ 3 we obtain [R,R] C. 

(21) follows from 0 ≡ Q and 0 ≡ R. 

(22) follows from 0 ≡ Q. 

(23) follows from 0 = N(c′,y,x,c) – Q(x,c′y,c) + c′∙ Q(y,x,c) and(ii). 

(24) follows from (21) and 0 ≡ M. 

(25) follows from 0 = 2D(x,c,y,x) + R(c,xy,x) – R(c,y,x) ∙ x + C(c,x,y) – B(c,x,xy) + B(c,x,y) ∙ x + 2B(x,x,y) ∙ c – 

2B(c,cy,x). 

The proof of Theorem (1) begins.   ♦ 

LEMMA 2: (a) (C,R,R) + (R,R,C)   C. 

                     (b) (C,R,[R,R]) = ([R,R],R,C) = 0. 

PROOF : From [1, Lemma 5] we have (C,R,R) C. Since (x,y,c) = (z,y,x) – R(c,y,x), by char. ≠ 2, (R,R,C)   C. 

To prove (b), from [1, Corollary 1] we have (C,R,[R,R]) = 0. To second part is from ([x,y],r,c) = (c,r,[x,y]) – 

R(c,r,[x,y]).   ♦    

LEMMA 3: Let W = (R,R,C) then (R,R,W c)   W i. 

PROOF : This is proved by induction. Since W   C by Lemma 2, (R,R,W 1)   W 1, and the result is true for i =1. 

We now show (R,R,W r)   W r and (R,R,W s)   W s implies (R,R,W r + s)   W r + s. (R,R,W rW s)  (R,W r,RW s) + 

(R,W r,W s)R + (R,R,W s)W r  by 0 ≡ D  (R,W r,R)W s + 0 + (R,R,W s)W r  by (23) and (21)   W r + s by induction. 

This finishes the poof of Lemma 3. If SR, let (S)# = ideal of R generated by S.   ♦ 

LEMMA 4: (W i)# = W i + W iR. 

PROOF : It is sufficient to show that W i + W iR is an ideal of R. (W i + W iR)R   W iR + W i ∙ R2 – (W i,R,R)   W 

iR + (R,R,W i) by 0 ≡ R W i + W iR. R(W i + W iR)   RW i + R(RW i)   RW i + (R,R,W i)   W i + W iR. 

Therefore W i + W iR is an ideal of R.    ♦ 

 

LEMMA 5: (W i)# ∙ (W j)#   (W i + j)#. 

PROOF : We do this proof in two parts. First W i ∙ (W j)# = W i(W j + W jR)   W i +j + W i + j R by (21). Second W 

iR ∙ (W j)# W i ∙ R(W j)# + (W i,(W j)#,R)   W i(W j)# + W i(W j)# ∙ R    

(W i + j)# by the first part.  ♦   

LEMMA 6: If R is generated by a set of n elements G, then Wn+1 = 0. 

PROOF : We do this proof in three parts. First: (C,R,R)   
Gg

(C,g,R) 

2(c,xy,r) = (c,xy + yx,r) + (c,[x,y],r) = (c,xy + yx,r) by (20) and (21) = (c,x,yr + ry) + (c,y,xr + rx) by 0 ≡ F = 

2(c,x,yr) + 2(c,y,xr) by (20) and (21). 

Second:    (C,a,R)(C,a,R) = 0. 

(C,a,R)(C,a,R)   (C,(C,R)a,R) by (23)   (C,(C,a,aR),R) by 0 ≡ C = 0 by Lemma 1 and (21). 

Third:   By 0 ≡ R, 2W   (C,R,R). Thus 2n+1W n+1   (C,R,R) n + 1. We will show (C,R,R) n + 1 = 0. 
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(C,R,R) n + 1   ∑ 




1

1

n

i

(C,xi,R), where xi ∈ G by the first part. In each product




1

1

n

i

(C,xi,R) at least two of the xi 

are identical as there are n+1 xi
’s taken from a set G containing n elements. By the second part 





1

1

n

i

(C ,xi,R) = 0. 

We have shown W n + 1 = 0. Let 
iW  = ((W i)#)c. For each I, 

iW  is an ideal of R, and from Lemma 5 we have

jW    
jiW 

.     ♦ 

LEMMA 7: I 2   
1W . 

PROOF : This proof takes four steps: (7.1),(7.2),(7.3) and (7.4). 

(a,a,x2) = (a,ax + xa,x) by 0 ≡ E = 2(a,a,x)x + (a,[a,x],x) by 0 ≡ C ∙ 2(a,a,bc) = (a,a,bc + cb) + (a,a,bc + cb) by (i) 

and (iii). Combining these two statements gives use 

2(a,a,bc) = 2(a,a,b)c + 2(a,a,c)b + (a,[a,b],c) + (a,[a,c],b).    … (7.1) 

We now show:  [R,I]  W .        … (7.2) 

3R([a,c],a,b) ∈ W. By Lemma 2 we have [R,(R,R,R)]   W and thus [R,I] W.  

c ∈ I implies (a,a,c) ∈ W
        …  (7.3) 

(a,a,c) = [c,a]a – [ca,a] + M(c,a,a) + B(a,c,a) ∈ W .    …  (7.4) 

Let c ∈ I. By (7.1) 2(a,a,bc) = 2(a,a,b)c + 2(a,a,c)b + (a,[a,b],c) + (a,[a,c],b); (a,[a,b],c) and (a,[a,c],b) are in W  

by (7.3). The remaining term 2(a,a,b)c must also be in W. We have shown (a,a,b)I    W  and thus I 2W.     ♦ 

 

LEMMA 8: (I,I,Wi)   
1iW . 

PROOF : The proof of Lemma 8 takes four steps. 

[(a,a,b),bc] = [(a,a,b)c,b] = [(a,a,cb),b] = − [(a,a,b),cb]    …  (8.1) 

By 0 ≡ G, (vi) and 0 ≡ K. Therefore [(a,a,b),bc] = 0.  

((a,a,b),b,c) = 0.         …  (8.2) 

3((a,a,b),b,c) = [(a,a,b),b]c – [(a,a,b),bc] + S((a,a,b),b,c) = 0 by 0 ≡ J and (8.1). 

(I,I,Wi)   
1iW .         …  (8.3) 

If c ∈ I ((a,a,b),c,z) = − (a,a,c),b,c) by (8.2) ∈ ( W ,b,c) by (7.3). Hence ((a,a,b),c,Wi)   ( W ,R, 
iW )   

1iW . We have now shown (I,I,Wi)   
1iW ; this completes the poof of Lemma (8).     ♦ 

 

LEMMA 9: 
iW I ∙ I   W i + 1. 

PROOF : (W i)# I ∙ I   (W i)# ∙ I 2 + ((W i)#,I,I) 

                                     + (W i,I,I) + (W iR,I,I)  by Lemmas (4),(5) and (7). 

                                     
1iW  + W i(R,I,I) + (W i,I,I)R + (W i,R,[I,I]) 

By 0 ≡ N   
1iW  by Lemmas 5,7 and 8.       ♦ 
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LEMMA 10: If R has n generators, then T
22

1

n
= 0. 

PROOF : Let I0 = R and define inductively Ii+1 = Ii ∙ I1. It is easy to show Ii is a right ideal for each I and (T1)I   Ii.  

By Lemma 8, I2i   
iW . This means R(T1)2n+2   I2n+2   

1nW  = 0. 

We have finished the proof of Theorem 1.      ♦ 

 

LEMMA 11: In a finitely generated locally (-1,1) ring R, x ∈ (x(a,b,c)TR)c implies x = 0. 

   This means that if P is the right ideal generated by x(a,b,c) which has all right multiples of x(a,b,c), but not 

necessarily x(a,b,c) as R might not have an identity, this right ideal is always a proper right ideal, and even if you 

enlarge it to Pc, it still is a proper right ideal. 

PROOF : If 2i3ix = x(a,b,c)𝜏 for some 𝜏 ∈ TR then 2i3ix = xT(a,b,c) 𝜏  and iterating (2i3i)nx = x(T(a,b,c) 𝜏 )n = 0 for 

suitable index n > 0 as T(a,b,c) 𝜏  ∈ the ideal T1 which is nilpotent. Therefore x = 0.    ♦ 

 

LEMMA 12: Suppose R is not necessarily generated. Here also x ∈ (x (a,b,c) TR)c implies x = 0. 

PROOF : If  x ∈ (x(a,b,c) TR)c then 2i3ix = xT(a,b,c) 𝜏 for some 𝜏 ∈ TR. 𝜏 is a combination of sums and products of a 

finite number of elements of the form Tr : r ∈ R. Let R# be the subring generated by a,b,c,x and the elements of 

which 𝜏 was made. In R# x ∈ (x(a,b,c)TR#)c so x = 0. ♦ 

 

LEMMA 13: If R has no proper fat right ideals then R is associative. 

PROOF : I is a fat right ideal (actually, a fat two-sided). Thus (i) I = 0 and R is associative or 

(ii) I = R. In this case R(R,R,R) ∙ R = 0 by Lemma 12; so R =  0.   ♦ 

 

LEMMA 14: If R has no proper ideals then R has no proper fat right ideals. 

PROOF : Assume R has no proper ideals and that P is a proper fat right ideal of R. If z ∈ P then (R,R,z)   P since 

(a,b,z) = (z,b,a) by 0 ≡ R. 

We continue by letting   A1 = z, 

                                        A2 = (R,R,A1), 

       An+1 = (R,R,An). 

Let A = ∪Ai. Now A   Z and A   P; A + AR   P and A + AR is a 2 ideal. Thus A = 0. So P ∩ Z = 0. Now [P2,R] 

  Z and [P2,R]   [PR,P]   P by 0 ≡ G and (20); therefore [P2,R] = 0. Thus p2 ∈ P ∩ Z so p2 = 0. Furthermore 

(R,P,P)   (P,R,R) = 0; so RP∙ P = 0. Let P1 = P + RP + (R,R,P).  P1 is a right ideal since (R,R,P)R   (R,R,R)P + 

(R,RR,P) + (R,PR,R) by 0 ≡ D  RP + (R,R,P)   P1. We will show P1
c ≠ R . P1P   P2 + (RP) + (R,R,P)P 

                  0 + 0 + (R,R,P)R + (R,R,P2) + (R,P.RP) by 0 ≡ D 

                  (R,P,RP)   (R,P,PR) + (R,P,[R,P])   (P,R,[R,P]) 

                  P by (i) and 0 ≡ Q. 

Now P1
c Pc   (P1P)c   P. If P1

c = R then RP   P and P is a two-sided, impossible. Thus P1
c ≠ R.  Let us repeat 

this construction. 

      P1 = (P + RP + (R,R,P))c, 

      P2 = (P1 + RP1+ (R,R,P1))c, 

      P3 = (Pn + RPn + (R,R,Pn))c. 

Pi ≠ R for all I, so Pi
2 = 0. Since ∪Pi is a two-sided, we have R2 = 0; this means RP   P. Therefore P is a two-ideal, 

contradiction.  ♦ 

 

THEOREM 2: If R is a simple locally (-1,1) ring then is an associative field. 
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PROOF : If  R has no proper ideals, by Lemma 14 R has no proper fat right ideals and by Lemma 13 R is 

associative. The center of R is 0 or a field. [R,R]   center. This implies [x,y]3 = 0;  hence [x,y] = 0. R must be 

commutative. A simple associative commutative ring is a field. So R is a field.         ♦      
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