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ABSTRACT : A simple finitely generated locally (-1,1) ring must be an associative field.
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INTRODUCTION : Hentzel and smith [1] studied simple locally (-1,1) nil rings and showed that a simple locally
(-1,1) nil ring of char. # 2,3 must be associative. Hentzel [1] studied properties of nil potent ideals in semi simple (-
1,1) rings which are nil. We concentrate mainly on the result of Hentzel [1] and prove that a simple finitely
generated locally (-1,1) ring must be an associative field.

Aring is a (-1,1) ring if it is satisfies the conditions:

0=AXY,2) = (x,y,2) + (v,2,X) + (z,x,y). ... (D

0=B(x,y,2) = (X,y,2) + (x,2,y). .. 2

A ring is locally (-1,1) if the subring generated by any two of its elements is (-1,1). For example, both (-1,1) rings
and alternative rings are locally (-1,1). In a nonassociative ring R, we define (x,y,z) = (xy)z — x(yz) and [X,y] = xy — yx
for all x,y € R. Aring R is said to be simple if whenever A is an ideal of R then either A =R or A = 0. By the center Z
of R we mean that the set of all elements z in N such that [z,R] =0 i.e., Z={z € N/ [z,R] = 0}. That is C represents
set of all elements which commutes with all elements in the ring and ¢ will always means and elements taken from
C. We use the following identities which hold in locally (-1,1) ring char. # 2,3, which were proved by Hentzel [1].
Whereas the commutative center C is defined as C = {c € R/ [c,R] = 0}.

0=C(x,y,2) = (xy,yz) - (X,y.2)y. )]

0=D(x,y,z,w) = (X,yz,w) + (x,wz,y) — (X,2,W)y — (X,Z,y)w. .. @

131


mailto:man7ju@gmail.com

K.Jayalakshmi & C.Manjula

0=E(xY,2) = (xy%2) - (X,y.yz + zy). .. (5
0=F(Xyy.2) = (xyy +YYy.2) - (Xyyz +2y) = (xy'yz + 2y). . (6)

0=G(xy.z) = [xyz] + [y.x] + [z.xy]. . (D
0=H(xy.2) = [x.[y.z]] + [y.[z.X]] + [z.[x.Y]]. . (8)

0 =1(xy,zw) = (xy,z,w) — (x,yz,w) + (X,y,2w) — X(y,Z,W) — (X,y,Z)W. )
0=J(xy.2) = [x,(y.z¥)] + [x,(zy.x)]. ... (10)
0=K(x,y,2) = [x,(y.y,2)] + [z.(y,y.¥)]. .. (11)
0=L(x,y,2) = [x,(y.y,2)] - 3[y,(x,z,Y)]. .. (12)
0=M(xy,2) = [xy,z] - x[y.z] - [x,z]y - 2(x.y,2) — (z.XY). .. (13)
0=N(xy.zw) = (xy,z,w) + (x.y,[zW]) — x(y,z,w) + (X, W)y. .. (14

0= 0O(xy.zw) = ([xyl.zw) — ([zwl.xy) = [x.(y,zW)] + [y,(x,zzW)]. .. (15)

0 =Pxy.zw) = [x.(y,zW)] - [y,(zw.X)] + [z.(W.x,y)] - [w,(x.y,2)]. .. (16)
0=0Q(xy,c) = (x,y,c) + (¥.x.c). .. (17
0=R(cxy) = (c.xy) - 2(y.x.c). .. (18)

0 =S(x,y,c) = 3(x,y.c) — [x,y]c + [x.yc]. ... (19)

If S is a subset of a locally (-1,1) ring R, by S ¢ we mean {x / 2'3' x € S for some 0 < i,j}. It is easily shown S
C-TecC (ST)cand (S¢) ¢ =S WecallasetSfatif S¢=S.

We need the following theorem proved by kleinfeld.
THEOREM 1: Inany (-1,1) ring (X,y,(x,X,y)) = (¥,X,(X,%,¥)) = ((x,X,y),X,y) = (X,x,y)[%,y] = 0.
PROOF : The proof of the theorem can be found in [4, Lemmas 1,2].

LEMMA 1: A c{x\ 3'x € additive subgroup generated by the set of all (y,y,r) for all y,r € R}.
PROOF : Let M = {x\ 3x € additive subgroup generated by the set of all (y,y,r) for all y,r € R}. (R,R,R) < M by

[1, Lemma 2]. To show M is an ideal, by 0 = | it is only necessary to show x(y,y,r) € M for all x,y,r. This follows
from N(Xayvyvr) - C(vavr) ¢

If Ris a locally (-1,1) ring and k € R, define Ta - R — R by rTx = rk (right multiplication by k). Ty is an
element of the associative ring of all endomorphism on the abelian group (R,+). Let Tr = the subring of
endomorphism on (R,+) generated by {Ti\k € R}. Let | = (R,R,R) ©. | is an ideal of R and I C {(x,x,R)\ x € R}®

Lemma 1. Let T1= the ideal of Tr generated by {Ti\ k € I}. We shall now derive the following identities.

THEOREM 2: Let R be a finitely generated locally (-1,1) ring, then T; is a nilpotent ideal of Tr.
[RR] =C. .. (20)
(CCR)=(CRC)=(RC,C)=0. .. 2D
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(x,x,C) = 0. ... (22)
(x,y,c)c’ = (x,c'y,c). ... (23)
C is a commutative associative subring of R. .. 24

(vi) (X,x,y)c = (X,x,cy). ... (25

PROOF : We prove equation (20) from equation (8).

0 =[[R,R],R] +[[R,R],R] + [R,R].R]

0 = [[R,R],R] by char # 3 we obtain [R,R] C.

(21) follows from 0 =Q and 0 = R.

(22) follows from 0 = Q.

(23) follows from 0 = N(c’,y,x,c) — Q(x,c'y,c) + ¢ Q(y,x,c) and(ii).

(24) follows from (21) and 0 = M.

(25) follows from 0 = 2D(x,c,y,X) + R(c,xy,x) — R(c,y,X) - x + C(c,x,y) — B(c,x,xy) + B(c,x,y) - X + 2B(X,x,y) - ¢ —
2B(c,cy ).

The proof of Theorem (1) begins. ¢

LEMMA 2: (a) (C,R,R) +(R,R,C) — C.

(b) (C,R,[R.R]) =([RRLI,R,C) =0.
PROOF : From [1, Lemma 5] we have (C,R,R) —C. Since (x,y,c) = (z,y,X) — R(c,y,X), by char. # 2, (R,R,C) < C.
To prove (b), from [1, Corollary 1] we have (C,R,[R,R]) = 0. To second part is from ([x,y].r,c) = (c,r,[x,y]) —
R(c,r,[xy]). ¢

LEMMA 3: Let W = (R,R,C) then (RRW®) < W'.

PROOF : This is proved by induction. Since W < C by Lemma 2, (R,R,W ) < W1, and the result is true for i =1.
We now show (R,R,W" < W'and (RR,W?) < W?*implies(RRW ™% c W""s (RRWW? C(RW'RW?)+
RW'WHR +(RRWSHW' by 0=D C(RW"RW S+ 0+ (RRWSW ' by (23) and (21) < W "** by induction.
This finishes the poof of Lemma 3. If SCR, let (S)# = ideal of R generated by S. ¢

LEMMA 4: (W )#=Wi+WR.

PROOF : It is sufficient to show that W' + W 'R is an ideal of R. (W + WIR)R c WR+W'-R?— (W RR) C W
R+ RRWHby0=RCW +WR RW +WR) C RW +RRW) C RWi+ RRW) c Wi+ WTR,
Therefore W'+ W R is an ideal of R. ¢

LEMMA 5: (W )# - (Wit < (W i+i)#
PROOF : We do this proof in two parts. First W - (W iy# =W (Wi + WIR) € W'*+WIi*iR by (21). Second W
R-(Wi# CW'-RWI)#+ (W (W)#R) < Wi(Wi#+WiW)E R

(W *0)# by the first part.

LEMMA 6: If R is generated by a set of n elements G, then W™ = 0.
PROOF : We do this proof in three parts. First: (C,R,R) C Z (C,a,R)
geG
2(cxy,r) = (cxy + yx,r) + (c,[xyl,r) = (c.xy + yx,r) by (20) and (21) = (c,x,yr + ry) + (Cy,xr + rx) by 0 = F =
2(c,x,yr) + 2(c,y,xr) by (20) and (21).
Second: (C,a,R)(C,a,R) =0.
(C,a,R)(C,a,R) < (C,(C,R)a,R) by (23) < (C,(C,a,aR),R) by 0=C =0by Lemma 1 and (21).
Third: By 0=R, 2W C (C,R,R). Thus 2™W ™! — (C,R,R) "*1. We will show (C,R,R)"*1=0.
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n+l n+l
(CRR " ¥ H (Cxi,R), where x; € G by the first part. In each productH (Cxi,R) at least two of the x;
i=1 i=1

n+l
are identical as there are n+1 x;'s taken from a set G containing n elements. By the second part H (C xi,R) = 0.
i=1

We have shown W "*1 =0, Let <W i> = ((W H#)°. For each |, <W i> is an ideal of R, and from Lemma 5 we have

W) < ).

LEMMAT7: 12 < <W1>.

PROOF : This proof takes four steps: (7.1),(7.2),(7.3) and (7.4).

(a,a,x?) = (a,ax + xa,x) by 0 = E = 2(a,a,x)x + (a,[a,x],x) by 0 = C - 2(a,a,bc) = (a,a,bc + cb) + (a,a,bc + cb) by (i)
and (iii). Combining these two statements gives use

2(a,a,bc) =2(a,a,b)c + 2(a,a,c)b + (a,[a,b],c) + (a,[a,c],b). .. (7.1

We now show: [R,1] < <W> . ... (1.2
3R([a,c],a,b) € W. By Lemma 2 we have [R,(R,R,R)] < W and thus [R,I] CW.
¢ € | implies (a,a,c) € <W> L 3)
(a,a,c) =[c,ala—[ca,a] + M(c,a,a) + B(a,c,a) € <W> . ... (7.4)
Letc € I. By (7.1) 2(a,a,bc) = 2(a,a,b)c + 2(a,a,c)b + (a,[a,b],c) + (a,[a,c],b); (a,[a,b],c) and (a,[a,c],b) are in <W>

by (7.3). The remaining term 2(a,a,b)c must also be in W. We have shown (a,a,b)l < <W> andthus I2CW. ¢

LEMMA 8: (I,1,W) < <W‘*1>.
PROOF : The proof of Lemma 8 takes four steps.

[(a,a,b),bc] = [(a,a,b)c,b] = [(a,a,cb),b] =—[(a,a,b),ch] ... (8.1)

By 0 =G, (vi) and 0 = K. Therefore [(a,a,b),bc] = 0.

((a,a,b),b,c) =0. ... (8.2)
3((a,a,b),b,c) = [(a,a,b),b]c — [(a,a,b),bc] + S((a,a,b),b,c) =0 by 0=J and (8.1).

(LW < <W‘+1>. ... (83)

If ¢ € 1 ((a,a,b),c,z) = — (a,a,c),b,c) by (8.2) € (<W> .b,c) by (7.3). Hence ((a,a,b),c,W') < (<W> R, <Wi>) <

<W”l> . We have now shown (I, W) < <W”l> : this completes the poof of Lemma (8). ¢

LEMMA 9: <W‘>|-| c Wit

PROOF : (Wiy# 11 < (W)#- 12+ (Wi#1,1)

c + (WL + (W'R,LI) by Lemmas (4),(5) and (7).
- <W‘+1> FWIR,LI) + (WLLDR + (WLR,[I1])

ByO=N C <W i+1> by Lemmas5,7and 8. ¢
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LEMMA 10: If R has n generators, then len+2 =0.
PROOF : Let lp = R and define inductively lis; = I - l1. It is easy to show I; is a right ideal for each I and (T1)' < .

By Lemma 8, i C <W i > . This means R(T1)?"? C las2 C <W "+l> =0.

We have finished the proof of Theorem1. ¢

LEMMA 11: In afinitely generated locally (-1,1) ring R, x € (x(a,b,c)Tr)¢ implies x = 0.

This means that if P is the right ideal generated by x(a,b,c) which has all right multiples of x(a,b,c), but not
necessarily x(a,b,c) as R might not have an identity, this right ideal is always a proper right ideal, and even if you
enlarge it to P¢, it still is a proper right ideal.

PROOF : If 2'3'x = x(a,b,c)r for some 7 € Tr then 2'3'x = XT@ape T and iterating (2'3)™ = X(T(ap,e T )" = 0 for
suitable index n > 0 as Tape T € the ideal Ty whichis nilpotent. Therefore x=0.

LEMMA 12: Suppose R is not necessarily generated. Here also x € (x (a,b,c) Tr)® implies x = 0.

PROOF : If x € (x(a,b,c) Tr)® then 2'3'x = xT(apc) T for some t € Tr. T is a combination of sums and products of a
finite number of elements of the form T, : r € R. Let R# be the subring generated by a,b,c,x and the elements of
which T was made. In R# x € (x(a,b,c)Trs)° S0 X = 0. ¢

LEMMA 13: If R has no proper fat right ideals then R is associative.
PROOF : | is a fat right ideal (actually, a fat two-sided). Thus (i) I = 0 and R is associative or
(i) I =R. Inthiscase R(R,R,R)-R=0by Lemma 12;soR= 0. ¢

LEMMA 14: If R has no proper ideals then R has no proper fat right ideals.
PROOF : Assume R has no proper ideals and that P is a proper fat right ideal of R. If z € P then (R,R,z2) < P since
(a,b,z) =(z,b,a) by 0 = R.
We continue by letting A; =z,
Az = (R,R,A1),
Ani1 = (R,R,AN).
Let A=UA. NowA c ZandA < P; A+ AR c Pand A + AR isa 2 ideal. Thus A=0.So P N Z=0. Now [P?R]
c Zand [P?2R] < [PR,P] < P by 0 = G and (20); therefore [P2,R] = 0. Thus p? € P N Z so p? = 0. Furthermore
(R,P,P) < (P,R,R)=0;s0RP- P =0. Let P, =P + RP + (R,R,P). P:is aright ideal since (R,R,P)R < (R,RR)P +
(R,RR,P) + (R,PR,R) by 0=D C RP + (R,R,P) < P:. We will show Pi*#R . P:P < P2+ (RP) + (R,R,P)P
c0+0+(RRPR+(RRP)+(RPRP)by0=D
< (R,P,RP) < (R,P,PR) + (R,P,[R,P]) < (P,R,[R,P])
c Pby(i)and 0 = Q.
Now P1¢ P C (PiP)® < P. If P, =R then RP C P and P is a two-sided, impossible. Thus P1¢ # R. Let us repeat
this construction.
P;=(P +RP + (RR,P)),
P, = (P1 + RP1+ (R,R,Pl))c,
P3 = (Pn + RP, + (R,R,Pn))C.
Pi # R for all I, so Pi? = 0. Since UP; is a two-sided, we have R? = 0; this means RP < P. Therefore P is a two-ideal,
contradiction.

THEOREM 2: If R is a simple locally (-1,1) ring then is an associative field.

135



K.Jayalakshmi & C.Manjula

PROOF : If R has no proper ideals, by Lemma 14 R has no proper fat right ideals and by Lemma 13 R is
associative. The center of R is 0 or a field. [R,R] < center. This implies [x,y]* = 0; hence [x,y] = 0. R must be
commutative. A simple associative commutative ring is a field. So R is a field. .
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