American J. of Mathematics and Sciences Vol. 3, No -1 ,(January 2014) Copyright © Mind Reader Publications ISSN No: 2250-3102

ON CENTER OF FINITELY GENERATED LOCALLY (-1,1) RINGS

K.Jayalakshmi Assistant Professor in Mathematics, J.N.T.University Anantapur College of Engg. J.N.T.University Anantapur. Anantapur.(A.P) INDIA. jayalakshmikaramsi@gmail.com

C.Manjula Department of Mathematics, J.N.T.University Anantapur College of Engg. J.N.T.University Anantapur. Anantapur.(A.P) INDIA. <u>man7ju@gmail.com</u>

ABSTRACT: A simple finitely generated locally (-1,1) ring must be an associative field.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 17D20

KEY WORDS : Locally (-1,1) ring, nilpotent ideal, simple ring.

INTRODUCTION : Hentzel and smith [1] studied simple locally (-1,1) nil rings and showed that a simple locally (-1,1) nil ring of char. \neq 2,3 must be associative. Hentzel [1] studied properties of nil potent ideals in semi simple (-1,1) rings which are nil. We concentrate mainly on the result of Hentzel [1] and prove that a simple finitely generated locally (-1,1) ring must be an associative field.

A ring is a (-1,1) ring if it is satisfies the conditions: $0 \equiv A(x,y,z) = (x,y,z) + (y,z,x) + (z,x,y).$... (1)

$$0 \equiv B(x, y, z) = (x, y, z) + (x, z, y).$$
(2)

A ring is locally (-1,1) if the subring generated by any two of its elements is (-1,1). For example, both (-1,1) rings and alternative rings are locally (-1,1). In a nonassociative ring *R*, we define (x,y,z) = (xy)z - x(yz) and [x,y] = xy - yx for all $x,y \in R$. A ring *R* is said to be simple if whenever *A* is an ideal of *R* then either A = R or A = 0. By the center *Z* of *R* we mean that the set of all elements *z* in *N* such that [z,R] = 0 i.e., $Z = \{z \in N / [z,R] = 0\}$. That is *C* represents set of all elements which commutes with all elements in the ring and *c* will always means and elements taken from *C*. We use the following identities which hold in locally (-1,1) ring char. $\neq 2,3$, which were proved by Hentzel [1]. Whereas the commutative center *C* is defined as $C = \{c \in R / [c,R] = 0\}$.

$$0 \equiv C(x, y, z) = (x, y, yz) - (x, y, z)y.$$
(3)

$$0 \equiv D(x, y, z, w) = (x, yz, w) + (x, wz, y) - (x, z, w)y - (x, z, y)w.$$
(4)

$0 \equiv E(x, y, z) = (x, y^2, z) - (x, y, yz + zy).$	(5)
$0 \equiv F(x,y,y',z) = (x,yy'+y'y,z) - (x,y,y'z+zy') - (x,y',yz+zy). \qquad \dots (6$)
$0 \equiv G(x, y, z) = [x, yz] + [y, zx] + [z, xy].$	(7)
$0 \equiv H(x, y, z) = [x, [y, z]] + [y, [z, x]] + [z, [x, y]].$	(8)
$0 \equiv I(x, y, z, w) = (xy, z, w) - (x, yz, w) + (x, y, zw) - x(y, z, w) - (x, y, z)w.$	(9)
$0 \equiv J(x, y, z) = [x, (y, z, x)] + [x, (z, y, x)].$	(10)
$0 \equiv K(x, y, z) = [x, (y, y, z)] + [z, (y, y, x)].$	(11)
$0 \equiv L(x, y, z) = [x, (y, y, z)] - 3[y, (x, z, y)].$	(12)
$0 \equiv M(x, y, z) = [xy, z] - x[y, z] - [x, z]y - 2(x, y, z) - (z, x, y).$	(13)
$0 \equiv N(x, y, z, w) = (xy, z, w) + (x, y, [z, w]) - x(y, z, w) + (x, z, w)y.$	(14)
$0 \equiv O(x, y, z, w) = ([x, y], z, w) - ([z, w], x, y) - [x, (y, z, w)] + [y, (x, z, w)].$	(15)
$0 \equiv P(x, y, z, w) = [x, (y, z, w)] - [y, (z, w, x)] + [z, (w, x, y)] - [w, (x, y, z)].$	(16)
$0 \equiv Q(x, y, c) = (x, y, c) + (y, x, c).$	(17)
$0 \equiv R(c, x, y) = (c, x, y) - 2(y, x, c).$	(18)
$0 \equiv S(x, y, c) = 3(x, y, c) - [x, y]c + [x, yc].$	(19)

If *S* is a subset of a locally (-1,1) ring *R*, by *S*^{*c*} we mean $\{x / 2^i 3^i x \in S \text{ for some } 0 \le i, j\}$. It is easily shown *S* $c \cdot T^c \subseteq (ST)^c$ and $(S^c)^c = S^c$. We call a set *S* fat if $S^c = S$.

We need the following theorem proved by kleinfeld.

THEOREM 1: In any (-1,1) ring (x,y,(x,x,y)) = (y,x,(x,x,y)) = ((x,x,y),x,y) = (x,x,y)[x,y] = 0. **PROOF :** The proof of the theorem can be found in [4, Lemmas 1,2].

LEMMA 1: $A \subseteq \{x \setminus 3^i x \in \text{additive subgroup generated by the set of all <math>(y, y, r)$ for all $y, r \in R\}$. **PROOF :** Let $M = \{x \setminus 3^i x \in \text{additive subgroup generated by the set of all <math>(y, y, r)$ for all $y, r \in R\}$. $(R, R, R) \subseteq M$ by [1, Lemma 2]. To show M is an ideal, by $0 \equiv I$ it is only necessary to show $x(y, y, r) \in M$ for all x, y, r. This follows from N(x, y, y, r) - C(x, y, r).

If *R* is a locally (-1,1) ring and $k \in R$, define $T_a : R \to R$ by $rT_k = rk$ (right multiplication by *k*). T_k is an element of the associative ring of all endomorphism on the abelian group (R,+). Let T_R = the subring of endomorphism on (R,+) generated by $\{T_k \mid k \in R\}$. Let $I = (R,R,R)^c$. *I* is an ideal of *R* and $I \subseteq \{(x,x,R) \mid x \in R\}^c$ Lemma 1. Let T_1 = the ideal of T_R generated by $\{T_k \mid k \in I\}$. We shall now derive the following identities.

THEOREM 2: Let *R* be a finitely generated locally (-1,1) ring, then T_i is a nilpotent ideal of T_R . $[R,R] \subseteq C$ (20) (C,C,R) = (C,R,C) = (R,C,C) = 0. ... (21)

ON THE CENTER OF FINITELY GENERATED LOCALLY (-1,1) RINGS

 (x,x,C) = 0. ... (22)

 (x,y,c)c' = (x,c'y,c). ... (23)

 C is a commutative associative subring of R.
 ... (24)

 (vi) (x,x,y)c = (x,x,cy). ... (25)

PROOF: We prove equation (20) from equation (8).

0 = [[R,R],R] + [[R,R],R] + [R,R],R]

 $0 = [[R,R],R] \text{ by char } \neq 3 \text{ we obtain } [R,R] \subseteq C.$ (21) follows from $0 \equiv Q$ and $0 \equiv R$.

(21) follows from 0 = Q and

(22) follows from $0 \equiv Q$.

(23) follows from $0 = N(c',y,x,c) - Q(x,c'y,c) + c' \cdot Q(y,x,c)$ and(ii).

(24) follows from (21) and $0 \equiv M$.

(25) follows from $0 = 2D(x,c,y,x) + R(c,xy,x) - R(c,y,x) \cdot x + C(c,x,y) - B(c,x,xy) + B(c,x,y) \cdot x + 2B(x,x,y) \cdot c - 2B(c,cy,x).$

The proof of Theorem (1) begins. \blacklozenge

LEMMA 2: (a) $(C,R,R) + (R,R,C) \subseteq C$.

(b) (C,R,[R,R]) = ([R,R],R,C) = 0.

PROOF: From [1, Lemma 5] we have $(C,R,R) \subseteq C$. Since (x,y,c) = (z,y,x) - R(c,y,x), by char. $\neq 2$, $(R,R,C) \subseteq C$. To prove (b), from [1, Corollary 1] we have (C,R,[R,R]) = 0. To second part is from ([x,y],r,c) = (c,r,[x,y]) - R(c,r,[x,y]).

LEMMA 3: Let W = (R, R, C) then $(R, R, W^c) \subseteq W^i$.

PROOF : This is proved by induction. Since $W \subseteq C$ by Lemma 2, $(R, R, W^1) \subseteq W^1$, and the result is true for i = 1. We now show $(R, R, W^r) \subseteq W^r$ and $(R, R, W^s) \subseteq W^s$ implies $(R, R, W^{r+s}) \subseteq W^{r+s}$. $(R, R, W^rW^s) \subseteq (R, W^r, RW^s) + (R, W^r, W^s)R + (R, R, W^s)W^r$ by $0 \equiv D \subseteq (R, W^r, R)W^s + 0 + (R, R, W^s)W^r$ by (23) and (21) $\subseteq W^{r+s}$ by induction. This finishes the poof of Lemma 3. If $S \subseteq R$, let (S)# = ideal of R generated by S.

LEMMA 4: $(W^{i})# = W^{i} + W^{i}R$.

PROOF: It is sufficient to show that $W^i + W^i R$ is an ideal of R. $(W^i + W^i R)R \subseteq W^i R + W^i \cdot R^2 - (W^i, R, R) \subseteq W^i R + (R, R, W^i)$ by $0 \equiv R \subseteq W^i + W^i R$. $R(W^i + W^i R) \subseteq RW^i + R(RW^i) \subseteq RW^i + (R, R, W^i) \subseteq W^i + W^i R$. Therefore $W^i + W^i R$ is an ideal of R.

LEMMA 5: (W^i) # \cdot (W^j) # \subseteq (W^{i+j}) #.

PROOF: We do this proof in two parts. First $W^i \cdot (W^j) \# = W^i (W^j + W^j R) \subseteq W^{i+j} + W^{i+j} R$ by (21). Second $W^i R \cdot (W^j) \# \subseteq W^i \cdot R(W^j) \# + (W^i, (W^j) \#, R) \subseteq W^i (W^j) \# + W^i (W^j) \# \cdot R \subseteq$

 (W^{i+j}) # by the first part. \blacklozenge

LEMMA 6: If *R* is generated by a set of *n* elements *G*, then $W^{n+1} = 0$. **PROOF :** We do this proof in three parts. First: $(C,R,R) \subseteq \sum_{\substack{p \in G \\ p \in G}} (C,g,R)$

 $2(c,xy,r) = (c,xy + yx,r) + (c,[x,y],r) = (c,xy + yx,r) \text{ by } (20) \text{ and } (21) = (c,x,yr + ry) + (c,y,xr + rx) \text{ by } 0 \equiv F = 2(c,x,yr) + 2(c,y,xr) \text{ by } (20) \text{ and } (21).$ Second: $(C,a,R)(C,a,R) \equiv 0.$ $(C,a,R)(C,a,R) \subseteq (C,(C,R)a,R) \text{ by } (23) \subseteq (C,(C,a,aR),R) \text{ by } 0 \equiv C = 0 \text{ by Lemma 1 and } (21).$ Third: By $0 \equiv R, 2W \subseteq (C,R,R)$. Thus $2^{n+1}W^{n+1} \subseteq (C,R,R)^{n+1}$. We will show $(C,R,R)^{n+1} = 0$.

$$(C,R,R)^{n+1} \subseteq \sum_{i=1}^{n+1} (C,x_i,R)$$
, where $x_i \in G$ by the first part. In each product $\prod_{i=1}^{n+1} (C,x_i,R)$ at least two of the x_i

are identical as there are n+1 x_i 's taken from a set G containing n elements. By the second part $\prod_{i=1}^{n+1} (C, x_i, R) = 0$.

We have shown $W^{n+1} = 0$. Let $\langle W^i \rangle = ((W^i)\#)^c$. For each *I*, $\langle W^i \rangle$ is an ideal of *R*, and from Lemma 5 we have $\langle W^j \rangle \subseteq \langle W^{i+j} \rangle$.

LEMMA 7: $I^2 \subseteq \langle W^1 \rangle$.

PROOF : This proof takes four steps: (7.1),(7.2),(7.3) and (7.4). $(a,a,x^2) = (a,ax + xa,x)$ by $0 \equiv E = 2(a,a,x)x + (a,[a,x],x)$ by $0 \equiv C \cdot 2(a,a,bc) = (a,a,bc + cb) + (a,a,bc + cb)$ by (i) and (iii). Combining these two statements gives use 2(a,a,bc) = 2(a,a,b)c + 2(a,a,c)b + (a,[a,b],c) + (a,[a,c],b). ... (7.1) We now show: $[R,I] \subseteq \langle W \rangle$... (7.2) $3R([a,c],a,b) \in W$. By Lemma 2 we have $[R,(R,R,R)] \subseteq W$ and thus $[R,I] \subseteq W$. $c \in I$ implies $(a,a,c) \in \langle W \rangle$... (7.3)

 $(a,a,c) = [c,a]a - [ca,a] + M(c,a,a) + B(a,c,a) \in \langle W \rangle.$ (7.4)

Let $c \in I$. By (7.1) 2(a,a,bc) = 2(a,a,b)c + 2(a,a,c)b + (a,[a,b],c) + (a,[a,c],b); (a,[a,b],c) and (a,[a,c],b) are in $\langle W \rangle$

by (7.3). The remaining term 2(a,a,b)c must also be in W. We have shown $(a,a,b)I \subseteq \langle W \rangle$ and thus $I^2 \subseteq W$.

LEMMA 8: $(I, I, W^i) \subseteq \langle W^{i+1} \rangle$.

PROOF : The proof of Lemma 8 takes four steps.
 ... (8.1)

 [(a,a,b),bc] = [(a,a,b)c,b] = [(a,a,cb),b] = -[(a,a,b),cb] ... (8.1)

 By $0 \equiv G$, (vi) and $0 \equiv K$. Therefore [(a,a,b),bc] = 0.
 ... (8.2)

 ((a,a,b),b,c) = 0.
 ... (8.2)

 3((a,a,b),b,c) = [(a,a,b),b]c - [(a,a,b),bc] + S((a,a,b),b,c) = 0 by $0 \equiv J$ and (8.1).
 ... (8.3)

If $c \in I((a,a,b),c,z) = -(a,a,c),b,c)$ by (8.2) $\in (\langle W \rangle, b,c)$ by (7.3). Hence $((a,a,b),c,W^i) \subseteq (\langle W \rangle, R, \langle W^i \rangle) \subseteq \langle W^{i+1} \rangle$. We have now shown $(I,I,W^i) \subseteq \langle W^{i+1} \rangle$; this completes the poof of Lemma (8).

LEMMA 9: $\langle W^i \rangle I \cdot I \subseteq W^{i+1}$. PROOF : $(W^i) \# I \cdot I \subseteq (W^i) \# \cdot I^2 + ((W^i) \#, I, I)$ $\subseteq + (W^i, I, I) + (W^i, R, I, I)$ by Lemmas (4),(5) and (7). $\subseteq \langle W^{i+1} \rangle + W^i(R, I, I) + (W^i, I, I)R + (W^i, R, [I, I])$ By $0 \equiv N \subseteq \langle W^{i+1} \rangle$ by Lemmas 5,7 and 8.

ON THE CENTER OF FINITELY GENERATED LOCALLY (-1,1) RINGS

LEMMA 10: If *R* has n generators, then $T_1^{2n+2} = 0$.

PROOF: Let $I_0 = R$ and define inductively $I_{i+1} = I_i \cdot I_1$. It is easy to show I_i is a right ideal for each I and $(T_1)^I \subseteq I_i$. By Lemma 8, $I_{2i} \subseteq \langle W^i \rangle$. This means $R(T_1)^{2n+2} \subseteq I_{2n+2} \subseteq \langle W^{n+1} \rangle = 0$. We have finished the proof of Theorem 1.

LEMMA 11: In a finitely generated locally (-1,1) ring $R, x \in (x(a,b,c)T_R)^c$ implies x = 0.

This means that if *P* is the right ideal generated by x(a,b,c) which has all right multiples of x(a,b,c), but not necessarily x(a,b,c) as *R* might not have an identity, this right ideal is always a proper right ideal, and even if you enlarge it to P^c , it still is a proper right ideal.

PROOF: If $2^i 3^i x = x(a,b,c)\tau$ for some $\tau \in T_R$ then $2^i 3^i x = xT_{(a,b,c)}\tau$ and iterating $(2^i 3^i)^n x = x(T_{(a,b,c)}\tau)^n = 0$ for suitable index n > 0 as $T_{(a,b,c)}\tau \in$ the ideal T_1 which is nilpotent. Therefore x = 0.

LEMMA 12: Suppose *R* is not necessarily generated. Here also $x \in (x (a,b,c) T_R)^c$ implies x = 0.

PROOF: If $x \in (x(a,b,c) T_R)^c$ then $2^i 3^i x = x T_{(a,b,c)} \tau$ for some $\tau \in T_R$. τ is a combination of sums and products of a finite number of elements of the form $T_r : r \in R$. Let $R^{\#}$ be the subring generated by a, b, c, x and the elements of which τ was made. In $R^{\#} x \in (x(a,b,c)T_{R^{\#}})^c$ so x = 0.

LEMMA 13: If *R* has no proper fat right ideals then *R* is associative. **PROOF :** *I* is a fat right ideal (actually, a fat two-sided). Thus (i) I = 0 and *R* is associative or (ii) I = R. In this case $R(R,R,R) \cdot R = 0$ by Lemma 12; so R = 0.

LEMMA 14: If *R* has no proper ideals then *R* has no proper fat right ideals.

PROOF: Assume *R* has no proper ideals and that *P* is a proper fat right ideal of *R*. If $z \in P$ then $(R,R,z) \subseteq P$ since (a,b,z) = (z,b,a) by $0 \equiv R$.

We continue by letting $A_1 = z$, $A_2 = (R, R, A_1)$,

$$A_2 = (R, R, A_1),$$

 $A_{n+1} = (R, R, A_n)$

Let $A = \bigcup A_i$. Now $A \subseteq Z$ and $A \subseteq P$; $A + AR \subseteq P$ and A + AR is a 2 ideal. Thus A = 0. So $P \cap Z = 0$. Now $[P^2, R] \subseteq Z$ and $[P^2, R] \subseteq [PR, P] \subseteq P$ by $0 \equiv G$ and (20); therefore $[P^2, R] = 0$. Thus $p^2 \in P \cap Z$ so $p^2 = 0$. Furthermore $(R, P, P) \subseteq (P, R, R) = 0$; so $RP \cdot P = 0$. Let $P_1 = P + RP + (R, R, P)$. P_1 is a right ideal since $(R, R, P)R \subseteq (R, R, R)P + (R, RR, P) + (R, PR, R)$ by $0 \equiv D \subseteq RP + (R, R, P) \subseteq P_1$. We will show $P_1^c \neq R \cdot P_1P \subseteq P^2 + (RP) + (R, R, P)P$

$$\subseteq 0 + 0 + (R,R,P)R + (R,R,P^2) + (R,P,RP) \text{ by } 0 \equiv D$$
$$\subseteq (R,P,RP) \subseteq (R,P,PR) + (R,P,[R,P]) \subseteq (P,R,[R,P])$$
$$\subseteq P \text{ by (i) and } 0 \equiv Q.$$

Now $P_1^c P^c \subseteq (P_1 P)^c \subseteq P$. If $P_1^c = R$ then $RP \subseteq P$ and P is a two-sided, impossible. Thus $P_1^c \neq R$. Let us repeat this construction.

$$P_{1} = (P + RP + (R,R,P))^{c},$$

$$P_{2} = (P_{1} + RP_{1} + (R,R,P_{1}))^{c},$$

$$P_{3} = (P_{n} + RP_{n} + (R,R,P_{n}))^{c}.$$

 $P_i \neq R$ for all *I*, so $P_i^2 = 0$. Since $\cup P_i$ is a two-sided, we have $R^2 = 0$; this means $RP \subseteq P$. Therefore *P* is a two-ideal, contradiction.

THEOREM 2: If *R* is a simple locally (-1,1) ring then is an associative field.

PROOF: If *R* has no proper ideals, by Lemma 14 *R* has no proper fat right ideals and by Lemma 13 *R* is associative. The center of *R* is 0 or a field. $[R,R] \subseteq$ center. This implies $[x,y]^3 = 0$; hence [x,y] = 0. *R* must be commutative. A simple associative commutative ring is a field. So *R* is a field.

REFERENCES

1. Hentzel.I.R. and Smith.H.F, "Simple locally (-1,1) nil rings", Journal of algebra 262- 272.Vol.101.No.1.June 1986.

- 2. Kleinfeld.E, "A Generalization of strongly (-1,1) rings", Journal of algebra 119, 218-225(1988).
- 3. Suvarna.K and Jayalakshmi.K, "A Result on prime (-1,1) rings", proceedings of international conference on advances in mathematical and computational methods (AMCM-2011),Vol.1, 44-46.
- 4. Subhashini.K, "Simplicity on Accessible and (-1,1) rings", Int.J. Contemp.Math.Sciences, Vol.7,2012,no.48,2377-2381.
- 5. Subhashini.K, "Simple (1,0) rings", International Mathematical Forum, Vol.7, 2012, no.48, 2377-2381.